
CSCI 1120 November 18, 2015

Slide 1

Administrivia

• Reminder: Homework 6 due today.

• Homework 7 (the last one!) on the Web. Due at the start of finals. Also not

easy (by design).

Slide 2

Minute Essay From Last Lecture

• Many people sort of got the key point (see “answer” slide) — if you let “the

system” manage memory, it’s easier and less error-prone, but you have less

control.



CSCI 1120 November 18, 2015

Slide 3

A Little About the C Preprocessor

• C logically divides the process of producing an executable into distinct

phases. First phase is “preprocessing”.

• Preprocessing makes use of “preprocessor directives”, which start with a #.

• Examples you’ve seen — #include to include information about library

functions, #define to define constants.

Slide 4

A Little More About the C Preprocessor

• Other functionality includes macros and “conditional compilation”:

• Macros can be used to do a kind of generic programming. Simple example:

#define max(a, b) ((a) > (b) ? (a) : (b))

More complex macros can be used to generate multiple lines of code.

• Conditional compilation is often used to tailor library or other code to specific

environments. Also allows writing .h files that can be included more than

once without harm.

• More in chapter 14, some beyond the scope of this course. Focus is on

relatively simple text manipulation.



CSCI 1120 November 18, 2015

Slide 5

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

• The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic

help with object-oriented programming, but you can get something of the

same effect. But first, some simpler user-defined types . . .

Slide 6

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

• This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use float or

double in some application) in a single place.



CSCI 1120 November 18, 2015

Slide 7

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type is just a way of specifying a small range of values, e.g.

enum basic_color { red, green, blue, yellow };

enum basic_color color = red;

This can make code more readable, and sometimes combines nicely with

switch constructs.

• Under the hood, C enumerated types are really just integers, though, and they

can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

Slide 8

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types — something like a class

in an object-oriented language, but with no methods and no way to hide

fields/variables.

• Two versions of syntax (next slide) . . .



CSCI 1120 November 18, 2015

Slide 9

User-Defined Types in C — struct

• One way to define uses typedef:

typedef struct {

double x;

double y;

} point2D;

point2D some_point;

• Another way doesn’t:

struct point2D {

double x;

double y;

};

struct point2D some_point;

Slide 10

User-Defined Types in C — struct, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct point2D some_point;

some_point.x = 10.1;

some_point.y = 20.1;

-> if what you have is a pointer to a struct:

struct point2D * some_point_ptr = &some_point;

some_point_ptr->x = 10.1;

some_point_ptr->y = 20.1;



CSCI 1120 November 18, 2015

Slide 11

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See discussion in textbook about this; it can be useful, but can also make

code more difficult to understand.

Slide 12

User-Defined Types and Library Code

• Library code often makes use of “opaque” types (e.g., FILE).

• Implementing this often involves separating functionality into interface (.h file

containing type definitions, function declarations) and implementation (.c file

containing function definitions.

• This leads into . . .



CSCI 1120 November 18, 2015

Slide 13

Separate Compilation — Review

• C (like many languages) lets you split large programs into multiple

source-code files. Typical to put function declarations (headers), constants,

etc., in file ending .h, function definitions (code) in file ending .c.

Compilation process can be separated into “compile” (convert source to object

code) and “link” (combine object and library code to make executable) steps.

• UNIX utility make can help manage compilation process. Can also be useful

as a convenient way to always compile with preferred options. Idea behind

make — have computer figure out what needs to be recompiled and issue

right commands to recompile it.

Slide 14

Makefiles

• First step in using make is to set up “makefile” with “rules” describing how

files that make up your program (source, object, executable, etc.) depend on

each other and how to update the ones that are generated from others.

Normally call this file Makefile or makefile.

Simple example on sample programs page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.



CSCI 1120 November 18, 2015

Slide 15

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.

Slide 16

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.



CSCI 1120 November 18, 2015

Slide 17

“Phony” Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.

Slide 18

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• Example:

objs = main.o foo.o

CFLAGS = -Wall -pedantic

main: $(objs)

gcc $(CFLAGS) -o main $(objs)



CSCI 1120 November 18, 2015

Slide 19

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O

• Or you could use

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

and then optionally override the -O by saying, e.g., make OPT=-g foo.

Slide 20

Example — Sorted Linked List

• On the sample programs page there’s a directory with an implementation of a

sorted linked list, plus a rather elaborate test program and a make file for

building the test program. It’s intended as a model for the last homework, in

which you’re asked to fill in the blanks in a partial implementation of a binary

search tree.

• Look through code as time permits . . .



CSCI 1120 November 18, 2015

Slide 21

Minute Essay

• The intended question: Anything interesting to report about Homework 5

(sorting, file I/O, “encryption”) or Homework 6?

• The shortened question: Anything interesting to report about the recent

homework? or just sign in.


