
CSCI 1120 (Low-Level Computing), Spring 2015

Homework 3

Credit: 20 points.

1 Reading

Be sure you have read the assigned readings for classes through 2/18.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 1120 homework 3”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) C, like many programming languages, has a library function (rand()) that can
be used to generate a “random” sequence of numbers (quotes because it’s not truly random
— more in class sometime). This function can be used to generate a value in a specified range
(e.g., between 0 and 5 inclusive if you’re trying to simulate rolling a 6-sided die). rand()

itself generates a number between 0 and the library-defined constant value RAND MAX, so to
get a value in a smaller range you have to somehow map the larger range to the smaller
one. The somewhat obvious way to do this is by computing a remainder (see starter program
below), but with some implementations of rand() this gives results that aren’t very good.
The conventional wisdom is therefore to instead try to do a more-direct map (e.g., to map
to just two possible values, assign values from 0 through RAND MAX/2 to 0 and the remaining
values to 1).

Your mission for this problem is to write a C program that, given a number of samples N
and a number of “bins” B, generates a sequence of N “random” numbers, uses both methods
to map each generated number to a number between 0 and B − 1 inclusive, and shows the
distribution of results as in the sample output below.

One other thing to know about rand() is that by default it always starts with the same
value (and produces the same sequence). To make it start with a different value, you can call
srand() with an integer “seed”, so your program should prompt for one of those too.

Sample execution:

[bmassing@diasw04]$ ./a.out

seed?

5

1



CSCI 1120 Homework 3 Spring 2015

how many samples?

1000

how many bins?

6

counts using remainder method:

(0) 154

(1) 188

(2) 171

(3) 161

(4) 155

(5) 171

counts using quotient method:

(0) 172

(1) 175

(2) 183

(3) 150

(4) 168

(5) 152

If you feel ambitious you could also have the program print maximum and minimum counts
and the difference between them, as a crude measure of how uniform the distribution is:

[bmassing@diasw04]$ ./a.out

seed?

5

how many samples?

1000

how many bins?

6

counts using remainder method:

(0) 154

(1) 188

(2) 171

(3) 161

(4) 155

(5) 171

min = 154, max = 188, difference 34

counts using quotient method:

(0) 172

(1) 175

(2) 183

(3) 150

(4) 168

(5) 152

min = 150, max = 183, difference 33

(You will get an extra-credit point for doing this.)

Here is a starter program that prompts for the seed, generates a few “random” numbers, and

2



CSCI 1120 Homework 3 Spring 2015

illustrates the two methods of mapping to a specified range: rands.c1.

Of course, your program should check to make sure all the inputs are positive integers. (Yes,
error checking is a pain, but it’s an incentive to get better at copy-and-paste? and we might
eventually write a function that would make it easier.)

2. (10 points) Newton’s method for computing the square root of a non-negative number x
starts with an initial guess r0 and then repeatedly refines it using the formula

rn = (rn−1 + (x/rn−1))/2

Repetition continues until the absolute value of (rn)2 - x is less than some specified threshold
value. An easy if not necessarily optimal initial guess is just x.

Write a C program that implements this algorithm and compares its results to those obtained
with the library function sqrt(). Have the program prompt for x, the threshold value, and
a maximum number of iterations; do the above-described computation; and print the result,
the actual number of iterations, and the square root of x as computed using library function
sqrt(). Also have the program print an error message if the input is invalid (non-numeric
or negative).

Here are some sample executions:

[bmassing@diasw04]$ ./a.out

enter values for input, threshold, maximum iterations

2 .0001 10

square root of 2:

with newton’s method (threshold 0.0001): 1.41422 (3 iterations)

using library function: 1.41421

difference: 2.1239e-06

[bmassing@diasw04]$ ./a.out

enter values for input, threshold, maximum iterations

2 .000001 10

square root of 2:

with newton’s method (threshold 1e-06): 1.41421 (4 iterations)

using library function: 1.41421

difference: 1.59472e-12

Hints:

• To use the library function sqrt() you need not only the appropriate #include line (as
documented in its man page) but also the compile flag -lm (also documented in the man

page).

• You may find the library function fabs() useful.

1http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2015spring/Homeworks/HW03/Problems/rands.c

3


