
CSCI 1120 (Low-Level Computing), Spring 2015

Homework 4

Credit: 20 points.

1 Reading

Be sure you have read the assigned readings for classes through 3/18.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 1120 homework 4”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) In CSCI 1320 you probably learned about sorting algorithms and implemented
one or more of them. A simple way to test such an algorithm is to generate a sequence
of “random” numbers, sort them, and check that the result is in ascending order. Sample
program sort-starter.c1 shows how this might be done in C (leaving out the actual sorting).
For this problem you will do two things:

• Fill in code for the sort function so that it actually sorts. It’s completely up to you which
sorting algorithm to implement, though I’m inclined to recommend that you just do one
of the simple-but-slow ones (e.g., bubble sort or selection sort). If you feel ambitious,
you could try quicksort or mergesort, though mergesort is apt to be more trouble since
it requires a work array.

• Once you have your sort function working, revise the program so that rather than
generating random data it reads the values to sort from a file and writes the sorted
values to another file. The completed program should take two command-line arguments
giving the names of the input and output files. The program should print appropriate
error messages if it cannot open the input or output file or if the input file contains
anything but a sequence of integers. Since we have not yet talked about how to make
arrays larger at runtime, just write the program with a fixed-size array for holding input,
and have the program print an error message if the number of input values exceeds the
size of the array. It’s up to you whether you keep the part of the existing program that
checks whether the sort succeeds (I say “might as well”); if you do, just have it print to
standard output as before.

Hints:

1http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2015spring/SamplePrograms/Programs/

sort-starter.c

1



CSCI 1120 Homework 4 Spring 2015

• Sample program sum-from-file.c2 illustrates reading a sequence of integers from an
input file. Notice that the while loop to read integers stops when fscanf detects either
an error or the end of the file. The if after the loop uses feof to find out which of
these two things happened — feof returns a nonzero value (“true”) when the previous
attempt to read something detected end of file, zero (“false”) otherwise (i.e., an error).
Be advised that ferror is useful only for detecting I/O errors and is not set if fscanf
can read input from the stream but can’t convert it to the requested format.

2. (10 points) A very simple way to encrypt text is to rotate each alphabetic character N

positions. For example, if N is 1, “abc XYZ 1234” becomes “bcd YZA 1234”. (This is
obviously not industrial-strength encryption but is good enough to somewhat obscure the
plaintext.) Write a C program that implements this scheme. The program should take three
command-line arguments: the number of positions to rotate (which for simplicity should be a
positive integer), the name of the input file, and the name of the output file. It should print
error messages as appropriate (not enough command-line arguments, non-numeric N , input
or output files cannot be opened). For valid arguments, it should encrypt the input file and
write the result to the output file. To get full credit, your program should encrypt characters

as discussed in the hint below.

Hints:

• You don’t need to try to read input a line at a time; you can just read and process it a
character at a time using fgetc, fputc, and a function that encrypts a single character.
Sample program copy-file.c3 illustrates how to copy a file one character at a time.

• You can use library function strtol to convert a command-line argument string into an
integer. (You could also use atoi, which is simpler, but it doesn’t provide a nice way to
check for errors.) Example of using strtol:

char* endptr;

int N = strtol(argv[1], &endptr, 10);

if (*endptr != ’\0’) {

/* error */

}

• There are probably several ways you could approach encoding each character. The one
I want you to use here — partly for practice working with strings, but also because
it doesn’t rely on characters being encoded in ASCII (which on most systems these
days they are, but C doesn’t require it) — begins by looking up the character in a
string representing the alphabet. Starter code for such a scheme, to encode int variable
inchar:

int rotate(int inchar, int positions_to_rotate) {

/* or put these declarations outside all functions to make them "global" */

char* lc_alphabet = "abcdefghijklmnopqrstuvwxyz";

char* uc_alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

2http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2015spring/SamplePrograms/Programs/

sum-from-file.c
3http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2015spring/SamplePrograms/Programs/

copy-file.c

2



CSCI 1120 Homework 4 Spring 2015

/* look for input character in list of lowercase chars */

char* in_lc_alphabet = strchr(lc_alphabet, inchar);

if (in_lc_alphabet != NULL) {

/* lower-case character: find rotated char in lc_alphabet */

int position_in_alphabet = in_lc_alphabet - lc_alphabet;

/*

* YOUR CODE GOES HERE:

* use lc_alphabet and positions_to_rotate to find new character

* and return it

* strlen(lc_alphabet) may be helpful

*/

}

/*

* YOUR CODE GOES HERE:

* do something similar to the above for uppercase characters

* if input character not found in either "alphabet" just return it

*/

}

3


