
CSCI 1120 February 25, 2015

Slide 1

Administrivia

• Homework 1 grades mailed earlier today. If you (think you) turned something

in and didn’t get an e-mail from me with your grade (subject line will contain

”csci 1120”, check your spam folder and then ask.

I will post a sample solution soon.

• If you haven’t turned in Homework 2, please try to do so ASAP.

• Homework 3 was due today but a little more time may be needed. So extend

due date to next week. More about the problem(s) today.

Slide 2

Homework 3 — Hints and Tips

• One of the objectives of this homework was for you to practice loops (both

for and while) and working with arrays. In my thinking for loops are a

good fit for the first problem, while a while loop works well for the second,

and the first problem almost certainly needs at least one array.

Both problems are probably slightly more challenging than the ones in the

previous assignments. More about “random” numbers in the next few

slides . . .

• Remember to compile with -Wall and pay attention to any warning

messages. (The first thing I do when students tell me their code doesn’t work

is . . . It doesn’t always help but sometimes it does!)



CSCI 1120 February 25, 2015

Slide 3

A Very Little About “Random” Numbers

• Homework 3 asks you to work with the library functions srand() and

rand(). A few words about what they do . . .

• First, what we mean by “random” is (I think!) an interesting question with no

obvious answer. What’s often wanted is something that can’t be predicted,

and it’s not clear we can get that with a system that’s deterministic. Further,

even if we could, we might not want that, since we often want to be able to

repeat a test.

• So, often what we really want is a “pseudo-random number generator” —

something that generates a sequence of numbers that looks random but are

repeatable given some reproducible starting point.

• Early researchers apparently thought more-complex algorithms would give

better results, but — not necessarily. Very simple algorithms can give quite

good results.

Slide 4

A Very Little About “Random” Numbers, Continued

• Lots of uses for “random” sequences (e.g., so-called “Monte Carlo” methods

for simulating things), so many libraries include function(s) to produce them.

• Typical library provides some way to set the starting point (the “seed”) and

then a function that when called repeatedly produces the sequence —

srand() and rand() in standard C. Mostly these produce a large range

of possible values. (Why is this good?)

• Some libraries also provide functions to map the full range to a smaller one

(e.g., to simulate rolling a die). C doesn’t, but there are some semi-obvious

approaches. The problem on Homework 3 asks you to do a simple

comparison of two of them.



CSCI 1120 February 25, 2015

Slide 5

Review — Loops and Arrays in C

• Two basic kinds of loops — while and for (three if you also count do

... while).

• Arrays conceptually similar to arrays in higher-level languages, but underlying

implementation shows through more clearly, maybe, in the lack of safety

checks and extra(?) features.

Slide 6

Arrays — Example(s)

• A familiar(?) thing to do with a collection of data — sort it.

• So let’s sketch a program to sort an array. For now, have the program

generate the data using rand().



CSCI 1120 February 25, 2015

Slide 7

Pointers in C — Preview

• C, in contrast to Scala and Java (and Python), makes an explicit distinction

between things and pointers-to-things. In Python and Scala variables are

pointers/references to objects, and you deal with them fairly abstractly. In

Java, variables are either references to objects, or primitives, but one or the

other. In C, you can have variables that are “things” (integers, floating-point

numbers, etc.) and variables that are “pointers to things” (in some ways more

like variables in Python and Scala, but very low-level and with fewer safety

checks).

Slide 8

Pointers in C — Preview Continued

• Pointers are declared as in these examples:

int * pointer to int;

double * pointer to double;

(so the parameter types for some library functions may now make a little bit

more sense).

• & gets a pointer to something in memory (so now maybe the way you call

scanf makes a little bit more sense). example you could write

• To be continued . . .



CSCI 1120 February 25, 2015

Slide 9

Minute Essay

• With regard to srand and rand:

– Why is it good to be able to generate the same sequence or different

sequences?

– Why is it good to have a large range of possible values?

Slide 10

Minute Essay Answer

• With regard to srand and rand:

– It’s useful to be able to generate the same sequence for testing and

debugging. For actual use of an application, though, it’s probably more

useful to be able to generate different sequences.

– Being able to generate a large range of possible values is probably good in

its own right. But it’s almost essential if the algorithm for generating the

sequence is one that generates each element from the previous one, since

otherwise once we repeat an output value the sequence just repeats.


