
CSCI 1120 March 4, 2015

Slide 1

Administrivia

• Reminder: Homework 3 due today.

Slide 2

Minute Essay From Last Lecture

• (Review question, my answer.)

• Most people gave sensible answers. For the first question, a few mentioned

that Minecraft has a “world seed” option(?). For the second question, several

mentioned that it’s easier to reduce a large range to a small one than vice

versa. Indeed!

CSCI 1120 March 4, 2015

Slide 3

Using Library Functions, Revisited

• (Prompted by a student question about what you need to do to use the library

sqrt function in your code.)

• Recall from one of the early lectures that getting from source code to an

executable file involves two steps, “compiling” and “linking”.

Compiling a call to a library function just requires that the compiler know

about its parameters and return type. Get that via #include. Actual code

(for library function) not needed until link step. For gcc, if not found in

“standard” place(s), need additional flag(s) (e.g., -lm) to say where.

Slide 4

Pointers in C — Overview

• C, in contrast to Scala and Java (and Python), makes an explicit distinction

between things and pointers-to-things. In Python and Scala variables are

pointers/references to objects, and you deal with them fairly abstractly. In

Java, variables are either references to objects, or primitives, but one or the

other. In C, you can have variables that are “things” (integers, floating-point

numbers, etc.) and variables that are “pointers to things” (in some ways more

like variables in Python and Scala, but very low-level and with fewer safety

checks).

• That is, in C, pointers are basically just memory addresses, though declared

to point to variables (or data) of a particular type. Example:

int * pointer to int;

double * pointer to double;

CSCI 1120 March 4, 2015

Slide 5

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in languages more concerned with safety.

Slide 6

Parameter Passing in C — Review

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort

program). Why “apparent exception”? because really what’s being passed to

the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

CSCI 1120 March 4, 2015

Slide 7

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• (The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.)

Slide 8

Pointers Versus Arrays

• In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable.

• This is reflected in the man pages for many functions (e.g., printf —

strings are arrays of characters). It also means that when you pass an array

to a function, what you’re actually passing is a pointer — so the array is not

copied.

CSCI 1120 March 4, 2015

Slide 9

Pointers, Continued

• Calls to scanf should now make sense — the function is supposed to store

values into variable(s), and with pass-by-value we can’t do that unless we

pass a pointer.

• (Simple example.)

Slide 10

Strings in C

• Many languages have nice ways of working with text (character strings). C

does allow you to work with text, but what it provides is — no surprise —

somewhat primitive.

• In C, strings are arrays of chars, with the convention that the actual text of

interest is followed by a null character (8-bit zero, represented in code as

’\0’.

CSCI 1120 March 4, 2015

Slide 11

Working with Strings in C

• You can operate on individual characters however you see fit (accessing them

as elements of the array). Or you can access them using pointers to char.

(Recall that arrays and pointers are interchangeable in most contexts.)

• There are some useful standard-library functions for working with characters;

man ctype.h will list them.

• There are also standard library functions for some common operations (e.g.,

strcmp to compare two strings — returns -1/0/1 depending on which string

is lexicographically first). Simplest way to find them may be man -k

string and ignore everything but the last few screenfuls.

• scanf and printf use %s to read/write strings. (Use with caution —

more later.)

• (Simple example.)

Slide 12

Minute Essay

• Anything comment-worthy about homework 3?

