CSCI 1120 March 4, 2015

Administrivia

o Reminder: Homework 3 due today.

Slide 1

Minute Essay From Last Lecture

e (Review question, my answer.)

® Most people gave sensible answers. For the first question, a few mentioned
that Minecraft has a “world seed” option(?). For the second question, several
mentioned that it's easier to reduce a large range to a small one than vice

Slide 2 versa. Indeed!




CSCI 1120 March 4, 2015

4 )

Using Library Functions, Revisited

e (Prompted by a student question about what you need to do to use the library

sqr t function in your code.)

e Recall from one of the early lectures that getting from source code to an

executable file involves two steps, “compiling” and “linking”.

Slide 3 Compiling a call to a library function just requires that the compiler know
about its parameters and return type. Get that via #i ncl ude. Actual code
(for library function) not needed until link step. For gccC, if not found in

“standard” place(s), need additional flag(s) (e.g., - | M) to say where.

Pointers in C — Overview

e C, in contrast to Scala and Java (and Python), makes an explicit distinction
between things and pointers-to-things. In Python and Scala variables are
pointers/references to objects, and you deal with them fairly abstractly. In
Java, variables are either references to objects, or primitives, but one or the

) other. In C, you can have variables that are “things” (integers, floating-point

Slide 4 numbers, etc.) and variables that are “pointers to things” (in some ways more

like variables in Python and Scala, but very low-level and with fewer safety

checks).
e Thatis, in C, pointers are basically just memory addresses, though declared
to point to variables (or data) of a particular type. Example:

int = pointer_to.nt;
doubl e * poi nter _to_doubl e;




CSCI 1120 March 4, 2015

Pointers in C — Operators

e & gets a pointer to something in memory. So for example you could write
int Xx;
int » xptr = &;
e * “dereferences” a pointer. So for example you could change X above by
Slide 5 writing
*x_ptr = 10;
® You can also perform arithmetic on pointers (e.g., ++X_pt r ) — something

not allowed in languages more concerned with safety.

Parameter Passing in C — Review

e In C, all function parameters are passed “by value” — which means that the
value provided by the caller is copied to a local storage area in the called
function. The called function can change its copy, but changes aren’t passed

back to the caller.

Slide 6 e An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort
program). Why “apparent exception”? because really what's being passed to
the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data.

e This is at least simple and consistent, but has annoying limitations . ..




CSCI 1120 March 4, 2015

4 )
Pass By Reference (Sort Of)

e A significant potential limitation on functions is that a function can only return
a single value. Pointers provide a way to get around this restriction: By
passing a pointer to something, rather than the thing itself, we can in effect
have a function return multiple things.

Slide 7 e To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

e (The “sort of” of the title means that this isn’t true pass by reference, as it
exists in some other languages such as C++, but it can be used to more or

less get the same effect.)

4 )

Pointers Versus Arrays

e In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable.

e This is reflected in the Ma&N pages for many functions (e.g., pri nt f —
strings are arrays of characters). It also means that when you pass an array
Slide 8 to a function, what you're actually passing is a pointer — so the array is not

copied.




CSCI 1120 March 4, 2015

4 )

Pointers, Continued

e Calls to scanf should now make sense — the function is supposed to store
values into variable(s), and with pass-by-value we can't do that unless we
pass a pointer.

e (Simple example.)

Slide 9
Strings in C
o Many languages have nice ways of working with text (character strings). C
does allow you to work with text, but what it provides is — no surprise —
somewhat primitive.
e In C, strings are arrays of char s, with the convention that the actual text of
Slide 10 interest is followed by a null character (8-bit zero, represented in code as

"\0'




CSCI 1120

March 4, 2015

Slide 11

Working with Strings in C )

e You can operate on individual characters however you see fit (accessing them
as elements of the array). Or you can access them using pointers to char .
(Recall that arrays and pointers are interchangeable in most contexts.)

e There are some useful standard-library functions for working with characters;
man ctype. h will list them.

e There are also standard library functions for some common operations (e.g.,
St r cnp to compare two strings — returns -1/0/1 depending on which string
is lexicographically first). Simplest way to find them may be man - k
st ri ng and ignore everything but the last few screenfuls.

e scanf andpri ntf use % to read/write strings. (Use with caution —
more later.)

(Simple example.)

Slide 12

e Anything comment-worthy about homework 3?




