
CSCI 1120 March 18, 2015

Slide 1

Administrivia

• Homework 4 to be on the Web early tomorrow. I will send mail.

Slide 2

Pointers and Strings in C — Review

• C, in contrast to Scala and Java (and Python), makes an explicit distinction

between things and pointers-to-things, and allows a lot of freedom/flexibility in

working with the pointers-to-things. This has its pluses and minuses.

• In almost all contexts arrays and pointers are interchangeable.

• C “strings” are null-terminated arrays of characters and can be worked with as

arrays or using pointers. There are standard library functions for doing (some)

things with characters and strings.

CSCI 1120 March 18, 2015

Slide 3

Strings in C — Pitfalls

• Most functions assume that strings are properly terminated. (What do you

think happens if they’re not?)

• Many functions that store into a string have no way to check that it’s big

enough.

So getting text input from standard input safely is surprisingly difficult!

scanf can be made to check, but not (in my opinion) nicely, and it stops on

whitespace anyway. gets gets a full line, but notice what gcc says when

you use it.

Slide 4

Another Way to Get Input — Command-Line Arguments

• Now that we know about arrays, pointers, and text strings, we can talk about

command-line arguments. What are they? text that comes after the name of

the program on the command line (e.g., when you write gcc -Wall

myprogram.c, there are are two command-line arguments), possibly

modified by the shell (e.g., for filename wildcards).

• Most programming languages provide a way to access this text, often via

some sort of argument to the main function/method.

CSCI 1120 March 18, 2015

Slide 5

Command-Line Arguments in C

• In C, command-line arguments are passed to main as an array of text

strings. So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments.

(“Plus one”? yes, argv[0] is something system-dependent, often the path

for the program’s executable.)

• What if you want to get numeric input? you must convert string pointed to by

argv[i] to the type you want, e.g., with atoi or strtol.

Slide 6

Command-Line Arguments and UNIX Shells

• Be aware that most UNIX shells do some preliminary parsing and conversion

of what you type — e.g., splitting it up into “words”, expanding wildcards, etc.,

etc.

• If you don’t want that — enclose in quotation marks or use escape character

(backslash).

CSCI 1120 March 18, 2015

Slide 7

Examples

• (As time permits.)

Slide 8

Character-Oriented I/O in C

• Two useful functions to know about: getchar and putchar.

• Both treat characters as integers (which is allowed). getchar returns a

special value, EOF, at “end of file”. How to signal this when standard input is

from keyboard is system-dependent — often(?) control-D on UNIX-like

systems.

CSCI 1120 March 18, 2015

Slide 9

I/O in C — Recap

• getchar and putchar provide simple character-at-a-time I/O to

standard input/output.

• printf and scanf provide more sophisticated functionality, but again for

standard input/output.

• I/O redirection provides one way to work with files. Is there something more

general? Yes, but first review redirection . . .

Slide 10

Sidebar — Input/Output Redirection in UNIX/Linux

• In programming classes I talk about “reading from standard input” rather than

“reading from the keyboard”, and “writing to standard output” (or “writing to

standard error”) rather than “writing to the screen”.

• What’s the difference?

CSCI 1120 March 18, 2015

Slide 11

I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or from another

program or shell script.

• stdout and stderr (standard output, error) can go to terminal or file

(overwrite or append), separately or together.

• (Review notes from CS1 for specifics.)

Slide 12

File I/O — Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

CSCI 1120 March 18, 2015

Slide 13

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr) for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .

Slide 14

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

CSCI 1120 March 18, 2015

Slide 15

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc provide single-character input and output.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

Slide 16

Reading Text Strings

• Getting text-string input is surprisingly tricky. scanf (or fscanf) seems

like an obvious choice, but:

– it can’t read a string that includes blanks, and

– it has no nice way to limit the number of characters read to the size of the

array being read into.

.

• Getting a whole line is probably better. gets() is an obvious/simple choice

for reading from standard input, but it also has no way to limit how much is

read. fgets() is better. (Look at its man page.)

(Also notice puts() — simple way to write out a text string.)

• (Why do you care about limiting how much is read? not doing so can crash

your program or even represent a security risk . . .)

CSCI 1120 March 18, 2015

Slide 17

Simple Examples

• (Examples as time permits.)

Slide 18

Minute Essay

• Can you think of situations in which I/O redirection would be useful?

CSCI 1120 March 18, 2015

Slide 19

Minute Essay Answer

• One use for I/O redirection is program testing — you put the input in a file, run

the program with input redirected to come from that file, and capture the

output. If you later change the program, you can easily determine whether it

still produces the same results, by capturing output again and comparing

(e.g., with diff) to the old output. There are others!

