
CSCI 1120 October 12, 2016

Slide 1

Administrivia

• Reminder: Homework 5 due Monday.

• Homework 6 on the Web. Due 10/26. This one is not trivial but I think gives

you useful practice working with pointers.

Slide 2

Minute Essay From Last Lecture

• Responses (to question about readings) were quite varied! a few people had

bought (or rented) a copy of the textbook and liked it, a few people were using

the online tutorial and liked that, and a few people weren’t really using either

one and found that to be okay.



CSCI 1120 October 12, 2016

Slide 3

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays, added in C99 standard, help with that, but don’t solve

all related problems:

In many implementations, space is obtained for them on “the stack”, an area

of memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).

Slide 4

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(The trick here is that most implementations differentiate between two areas

of memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can skip this, but not good practice, since in

“real” programs you may eventually run out of memory.)

• Python and Scala hide most of this from you — allocating space for objects is

automatic/hidden, and space is reclaimed by automatic garbage collection.



CSCI 1120 October 12, 2016

Slide 5

Dynamic Memory and C, Continued

• Simple examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *

20);

free(nums);

though it’s better style/practice to write

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(*some text)

* 20);

free(nums);

• Some books/resources recommend “casting” value returned by malloc.

Other references recommend the opposite! But you should check the value —

if NULL, system was not able to get that much memory.

Slide 6

• (Example — “improved” sort program.)



CSCI 1120 October 12, 2016

Slide 7

Function Pointers

• You know from more-abstract languages that there are situations in which it’s

useful to have method parameters that are essentially code. Some languages

make that easy (functions are “first-class objects”) and others don’t, but

almost all of them provide some way to do it, since it’s so useful — e.g.,

providing a “less-than” function for a generic sort.

• In C, you do this by explicitly passing a pointer to the function.

Slide 8

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const void *, const void *);

and using my compare as the last parameter to qsort.

• (Example — “improved” sort program.)



CSCI 1120 October 12, 2016

Slide 9

C’s Variable Types, Revisited

• I’ve said in class that the C standard isn’t specific about some things (e.g.,

exact range of int data type). Sample program sizes.c illustrates that.

Almost all of our public machines are 64-bit, but we have one 32-bit machine

left.

• Sample program using sizeof operator (yes it is an operator) gives

different results . . .

Slide 10

This and That

• This: Return value from main is an int; convention is that 0 means

success and anything else means failure. To help you remember, and also to

help return something appropriate on failure, stdlib.h defines

EXIT SUCCESS and EXIT FAILURE. Good to use them.

• That: You (probably? maybe?) know about diff to compare contents of two

files. What you might not know about is vimdiff, which shows files side by

side (or one above the other with -o) using colors to highlight differences.

(The default color scheme isn’t the best for this. Change with

:colorscheme. Type that and a space and press “tab” repeatedly to

cycle through options.)



CSCI 1120 October 12, 2016

Slide 11

Minute Essay

• Many current high-level languages manage memory for you, including

garbage collection. What advantages do you think this has? What

disadvantages? (Both as compared to doing it yourself, as you do in C.)

Slide 12

Minute Essay Answer

• Advantages: easier, less error-prone.

• Disadvantages: less control, possibly unpredictable performance (which in

some contexts matters).


