
CSCI 1120 September 27, 2017

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on the Web. Due in two weeks. Many parts make use of file I/O,

which is next week’s topic, but . . .

• One problem asks you to fill in the body of a function to sort an array, and you

should be able to do that.

• You could probably start looking at the other problems as well and possibly do

some parts of it based on what we do today, and put off the parts that involve

working with files until next week.

Slide 2

Minor C Programming Tip

• In some of the sample programs, main() returns EXIT SUCCESS or

EXIT FAILURE. These are constants defined in stdlib.h and

somewhat more guaranteed to be more portable than 0 or 1 (not to mention

that they make it clearer what’s being done?).

CSCI 1120 September 27, 2017

Slide 3

Pointers, Characters, and Strings in C — Review

• Pointers are, roughly speaking, memory addresses. Useful in many contexts.

If they don’t make sense to you yet, practice using them may help?

• Characters in C are small integers, big enough to represent ASCII characters

but possibly not much more.

• Strings in C are arrays of characters, ending with “null character” (\0). Can

operate on them as arrays or using pointers.

• (Example — several ways to write a “string length” function.)

Slide 4

Characters and Strings in C — Library Functions

• C’s standard library is pretty limited but does contain some useful functions

for operating on character/string data.

• Some useful ones are isdigit etc. for characters and strlen,

strcmp, strchr, and strstr for strings.

(Notice that you need strcmp to compare strings for equality; == compares

pointers so generally will not do what you want.)

CSCI 1120 September 27, 2017

Slide 5

Strings in C — Pitfalls

• Most functions assume that strings are properly terminated. (What do you

think happens if they’re not?)

• Many functions that store into a string have no way to check that it’s big

enough.

So getting text input from standard input safely is surprisingly difficult!

scanf can be made to check, but not (in my opinion) nicely, and it stops on

whitespace anyway. gets gets a full line, but notice what gcc says when

you use it. fgets is maybe better but has its limitations too.

Slide 6

Another Way to Get Input — Command-Line Arguments

• Now that we know about arrays, pointers, and text strings, we can talk about

command-line arguments. What are they? text that comes after the name of

the program on the command line (e.g., when you write gcc -Wall

myprogram.c, there are are two command-line arguments), possibly

modified by the shell (e.g., for filename wildcards).

• Most programming languages provide a way to access this text, often via

some sort of argument to the main function/method.

CSCI 1120 September 27, 2017

Slide 7

Command-Line Arguments in C

• In C, command-line arguments are passed to main as an array of text

strings. So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments.

(“Plus one”? yes, argv[0] is something system-dependent, often the path

for the program’s executable.)

(Example — simple program to echo command-line arguments.)

• What if you want to get numeric input? you must convert string pointed to by

argv[i] to the type you want (more shortly).

Slide 8

Command-Line Arguments and UNIX Shells

• Be aware that most UNIX shells do some preliminary parsing and conversion

of what you type — e.g., splitting it up into “words”, expanding wildcards, etc.,

etc.

• If you don’t want that — enclose in quotation marks or use escape character

(backslash).

CSCI 1120 September 27, 2017

Slide 9

Converting Strings to Numbers

• As noted, command-line arguments are strings. Two sets of functions for

converting.

• One (atoi etc.) is easy to use but does no error checking (so I say avoid).

• Other (strtol etc.) is more trouble but does let you check for errors.

(Improve echo program.)

Slide 10

Minute Essay

• Anything noteworthy about Homework 4 (interesting, difficult, etc.)?

