
CSCI 1120 October 4, 2017

Slide 1

Administrivia

• Reminder: Homework 5 due next week.

• I hope most of you already know that most of the code I/we write in class is

available, sometime after class, under “sample programs” on the course Web

site? could be a help if you can’t or don’t want to try to type them in during

class, or if you miss a class.

Slide 2

Minute Essay From Last Lecture

• Mostly what stood out for me was how many people weren’t very close to

being done! but I guess with almost twelve hours to the deadline . . .

(Things are getting pretty busy for me — hence the delays in getting work

back to you — and I guess for many of you as well?)



CSCI 1120 October 4, 2017

Slide 3

Character-Oriented I/O in C

• Two useful functions to know about: getchar and putchar.

• Both treat characters as integers (which is allowed). getchar returns a

special value, EOF, at “end of file”. How to signal this when standard input is

from keyboard is system-dependent — often(?) control-D on UNIX-like

systems.

Slide 4

I/O in C — Recap

• getchar and putchar provide simple character-at-a-time I/O to

standard input/output.

• printf and scanf provide more sophisticated functionality, but again for

standard input/output.

• Reading text strings safely is surprisingly difficult, so I say when you can read

text a character at a time it may make sense to do so (as in one of the

problems on Homework 5).

• I/O redirection provides one way to work with files. Is there something more

general? Yes. (“Of course”?)



CSCI 1120 October 4, 2017

Slide 5

File I/O — Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Slide 6

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

(This is an example of an “opaque data type” — something defined in a

library, the details of which might vary among implementations and which

should not matter to users.)

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .



CSCI 1120 October 4, 2017

Slide 7

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

Slide 8

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc provide single-character input and output.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)



CSCI 1120 October 4, 2017

Slide 9

Reading Text Strings

• As noted previously, getting text-string input is surprisingly tricky. scanf (or

fscanf) seems like an obvious choice, but it has limitations. Getting a

whole line is probably better, and for that fgets() is the better choice.

• Because of this, I much prefer to pass such things as filenames as

command-line arguments.

Slide 10

Simple Examples

• First do a simple example of character-oriented I/O, using getchar and

putchar for a first version and then fgetc and fputc.

• Then try an example (a revised program to sum inputs) of using fscanf

and fprintf to read/write integers. Notice that fscanf “fails” in two

situations: end of file and bad input. One way to tell which has happened is

with feof(), which returns “true” at EOF. Notice that this function only

returns “true” after you’ve tried to read something but EOF was detected.

(Some published examples get this wrong!)



CSCI 1120 October 4, 2017

Slide 11

Minute Essay

• Did you buy a copy of the recommended-but-not-required textbook, and if so

are you finding the assigned readings helpful? If instead you’re reading

sections of that online tutorial, are they helpful?


