CSCI 1120 October 25, 2017

Administrivia

o Reminder: Homework 6 due today. If you're still struggling, turn in what you
have and try to finish and turn in an improved version later; by end of the day
Friday is fine.
| say in the writeup that you can use the sort command to check your

Slide 1 result, but in fact that won’t always work — it does for me, but because | have

some non-default options set so it just sorts in the same way st rcmp ()

does. | mean for you to just sort using st rcmp ()) . Sorry if | misled you!

Minute Essay From Last Lecture

® Some people had not seen make previously, though others mentioned that
Dr. Fogarty is using it in Functional Languages this year.

e One person mentioned using it to install things on Linux. Yes, it's part of the
traditional “install from source” that can still be useful, especially if you want to

Slide 2 install something without being root (administrator).

CSCI 1120 October 25, 2017

User-Defined Types

e So far we've only talked about representing very simple types — numbers,
characters, text strings, arrays, and pointers. You might ask whether there are
ways to represent more complex objects, such as one can do with classes in
object-oriented languages.

Slide 3 e The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic
help with object-oriented programming, but you can get something of the
same effect. But first, some simpler user-defined types ...

User-Defined Types in C — typedef

e typedef just provides a way to give a new name to an existing type, e.g.:
typedef charptr char x*;
e This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use £1oat or
Slide 4 double in some application) in a single place.

CSCI 1120 October 25, 2017

User-Defined Types in C — enum

e In C (and in some other programming languages) an enumeration or an
enumerated type is just a way of specifying a small range of values, e.g.
enum basic_color { red, green, blue, yellow };
enum basic_color color = red;
Slide 5 This can make code more readable, and sometimes combines nicely with

switch constructs.

e Under the hood, C enumerated types are really just integers, though, and they
can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

User-Defined Types in C — st ruct

o More complex (interesting?) types can be defined with st ruct, which lets
you define a new type as a collection of other types — something like a class
in an object-oriented language, but with no methods and no way to hide

fields/variables.

Slide 6 e Two versions of syntax (next slide) ...

CSCI 1120 October 25, 2017

User-Defined Types in C — st ruct

e One way to define uses typedef:

typedef struct {

double x;

double vy;
} point2D;
Slide 7 point2D some_point;
e Another way doesn’t:
struct point2D {
double x;
double y;
}i
struct point2D some_point;
User-Defined Types in C — st ruct, Continued
e Either way you define a st ruct, how you access its fields is the same:
. if what you have is a st ruct itself:
struct point2D some_point;
some_point.x = 10.1;
some_point.y = 20.1;
Slide 8 - Y

—> if what you have is a pointer to a st ruct:
struct point2D x some_point_ptr = &some_point;
some_point_ptr->x = 10.1;
some_point_ptr->y = 20.1;

CSCI 1120 October 25, 2017

4)

User-Defined Types in C — union

e For completeness, we should mention that C also provides a way of defining a
structure that can contain one of several alternatives (“this OR that”, as
opposed to the “this AND that” of st ruct) —union.

e See discussion in textbook about this; it can be useful, but can also make

Slide 9 code more difficult to understand.

User-Defined Types and Library Code

e Library code often makes use of “opaque” types (e.g., F ILE).

e |Implementing this often involves separating functionality into interface (. h file
containing type definitions, function declarations) and implementation (. c file

containing function definitions.

Slide 10 e This leads into ...

CSCI 1120 October 25, 2017

Separate Compilation and make — Review

o C (like many languages) lets you split large programs into multiple
source-code files. Typical to put function declarations (headers), constants,
etc., in file ending . h, function definitions (code) in file ending . c.
Compilation process can be separated into “compile” (convert source to object
code) and “link” (combine object and library code to make executable) steps.

Slide 11
e make can help manage compilation process. (Can also be useful as a
convenient way to always compile with preferred options.)
Example — Sorted Linked List
e As an example, consider writing code for a sorted linked list.
e (Start writing code in class.)
Slide 12

CSCI 1120 October 25, 2017

e Anything noteworthy about Homework 6? did it meet my goal of helping you
understand pointers better?

Slide 13

