
CSCI 1120 (Low-Level Computing), Spring 2017

Homework X

Credit: Up to 30 extra-credit points.

1 General Instructions

Do as many (or few) of the following problems as you like. Notice that you can receive at most 30
extra-credit points, but be advised that any points you earn can only help your grade — that is, I
will add them to your total points before dividing by the sum of the “perfect score” points on the
required assignments.

I am also open to the possibility of giving extra credit for other work— other problems/programs,
a report on something course-related, etc. If you have an idea for such a project, let’s negotiate
(by e-mail).

NOTE that the usual rules for collaboration do not apply to this assignment. More in the
following section.

2 Honor Code Statement

Please include with each part of the assignment the Honor Code pledge or just the word “pledged”,
and the statement “This assignment is entirely my own work” (where “my own work” means “except
for anything I got from the assignment itself, such as starter code, or from the course Web site
or sample solutions to other assignments). For this assignment you should not work with or seek
help from other students or from tutors, but you can consult other sources (other books, Web sites,
etc.), as long as you identify them.

3 Programming Problems

Do as many of the following programming problems as you choose. You will end up with at least
one code file per problem. Submit your program source (and any other needed files) by sending
mail to bmassing@cs.trinity.edu with each file as an attachment. Please use a subject line that
mentions the course and the assignment (e.g., “csci 1120 hw X” or “LL hw X”). You can develop
your programs on any system that provides the needed functionality, but I will test them on one of
the department’s Linux machines, so you should probably make sure they work in that environment
before turning them in.

1. (Up to 5 points) Write a C program that, given the name of a text file as a command-line
argument, reads the contents of the file and produces a histogram of word lengths, where a
“word” is one or more alphabetic characters. So for example given an input file containing
the following text

Now is the time for all good persons to come to the aid of their party.

A really long word, though perhaps not the longest in English,

is "antidisestablishmentarianism" (28 letters).

1

CSCI 1120 Homework X Spring 2017

it would produce the following

1 *

2 ******

3 ********

4 *****

5 **

6 **

7 *****

8

9

10

11

12

13

14

15

16

17

18

19

>=20 *

(Notice that it groups all words of length at least 20 into a single output line — simpler to
code and in my opinion reasonable.) To get maximum points, your program should do the
following:

• Use arrays only when you need them (e.g, you probably need one for counters — how
many words of length 1, how many of length 2, etc. — but probably not one for an
input line).

• Deal reasonably gracefully with input errors (no argument supplied, input file not found).

2. (Up to 5 points) Write a C program that evaluates polynomial p(x) given the coefficients
of p and one or more values of x. You can prompt for the coefficients or get them from
command-line arguments; once you have them, repeatedly prompt for values of x until the
user enters something non-numeric. A supposedly efficient way to evaluate a polynomial is
with “Horner’s rule” (check the Wikipedia article if you’re not familiar with this approach),
which can be implemented with a loop or recursion. A sample execution prompting for the
coefficients:

% mypgm

degree of polynomial (highest power)?

3

coefficients (starting with highest power)?

2 4 3 5

p(x) = 2.000000(x**3) + 4.000000(x**2) + 3.000000(x**1) + 5.000000

x?

10

p(10.000000) = 2435.000000

x?

2

CSCI 1120 Homework X Spring 2017

100

p(100.000000) = 2040305.000000

x?

invalid input

and one getting them from the command line:

% mypgm 2 3 4 5

p(x) = 5.000000(x**3) + 3.000000(x**2) + 4.000000(x**1) + 2.000000

x?

10

p(10.000000) = 5342.000000

x?

100

p(100.000000) = 5030402.000000

x?

invalid input

3. (Up to 22.5 points) Do Homework 8 from last semester’s CSCI 13121. (For each part of the
assignment, maximum extra-credit points are half the points shown in the assignment.)

4. (Up to 10 points) Write a C program that converts lengths from one unit to another —
centimeters to inches, kilometers to miles, etc. To keep things simple, you can represent the
different units with one- or two-character strings. The program should prompt repeatedly
for an amount to convert and the two units, stopping when the user signals “end of file”
(control-D on Linux). Sample execution:

% mypgm

enter amount and two units (control-D to end)

possible conversions:

in to cm

cm to in

ft to m

m to ft

mi to km

km to mi

1 in cm

1 in is 2.54 cm

enter amount and two units (control-D to end)

possible conversions:

in to cm

cm to in

ft to m

m to ft

mi to km

km to mi

2.54 cm in

1http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2016fall/Homeworks/HW08/Problems/homework.

pdf

3

CSCI 1120 Homework X Spring 2017

2.54 cm is 1 in

enter amount and two units (control-D to end)

possible conversions:

in to cm

cm to in

ft to m

m to ft

mi to km

km to mi

10 ki mi

unknown conversion

enter amount and two units (control-D to end)

possible conversions:

in to cm

cm to in

ft to m

m to ft

mi to km

km to mi

10 km mi

10 km is 6.21371 mi

enter amount and two units (control-D to end)

possible conversions:

in to cm

cm to in

ft to m

m to ft

mi to km

km to mi

10 km miles

invalid input

enter amount and two units (control-D to end)

possible conversions:

in to cm

cm to in

ft to m

m to ft

mi to km

km to mi

1 ft m

1 ft is 0.3048 m

enter amount and two units (control-D to end)

possible conversions:

4

CSCI 1120 Homework X Spring 2017

in to cm

cm to in

ft to m

m to ft

mi to km

km to mi

1 m ft

1 m is 3.28084 ft

To get maximum points, your program should do the following:

• Use an array of structs to represent a table of allowed conversions. Here is the struct
definition I used along with an example of defining a possible element of the required
array.

typedef struct {

char *from_unit;

char *to_unit;

double factor;

} conversion_t;

conversion_t factor = { "in", "cm", 2.54 };

(You can use a different struct if you think of one that seems better to you.)

• Use this array to generate the prompt (the part beginning possible conversions in
the sample output), and also (of course?) to figure out from user input what conversion
is to be done and how to do it.

• Generate all the conversion factors from a single basic one (1 inch is 2.54 centimeters)
(e.g., if you know that 1 inch is 2.54 centimeters, then 1 centimeter is 1/2.54 inches).

• Deal reasonably gracefully with invalid input.

You will get some points for any program that works more or less as shown by the sample
output, including one that just prompts once, does the requested conversion, and exits.

5. (Up to 10 points) Write a C program that performs encryption using the so-called Vigenère
cipher, as described in the Wikipedia article for it2 The program should take two command
line arguments:

• --encrypt or --decrypt (sort of self-explanatory)

• the keyword to use for the cipher (lower-case alphabetic only)

It should get the text to encrypt (or decrypt) from standard input and write the result to
standard output. As in the homework problem dealing with a simpler form of encryption,
lower-case letters should encrypt as lower-case, upper-case letters as upper-case, and every-
thing else as itself. So for example the following text

Hello!

Now is the time for all good persons to come to the aid of their country.

2
.

5

CSCI 1120 Homework X Spring 2017

ABCD 1234 !@#$

Goodbye!

encrypted with keyword abcd gives

Hfnoo!

Oqz it vke ukpe gqu amn jopf sesurnt vr cpoh tp vke bkg og vkejt fovpwrz.

CECE 1234 !@#$

Iroedbe!

(If this sounds interesting to you, feel free to ask for hints on how to proceed. I won’t include
them here for reasons of time.)

6. (Up to 15 points) In most of the programs we wrote in class and for homework we made some
attempt to “validate” user input (e.g., check that inputs are numeric when they’re supposed
to be, positive when they’re supposed to be, etc.). Doing this for many variables is apt to
produce a lot of uninterestingly-repetitive code. Also, if the input was not valid we just bailed
out of the program rather than trying again. Propose and implement one or more functions
that would address one or both of these possible shortcomings, and submit it/them with a
short program that could be used to test it/them. Be sure to include comments that describe
the function’s parameters and behavior (does it exit the program on error or prompt again
or what). You might like to have functions for working with input from standard input and
also functions that work with command-line arguments.

7. (Up to 15 points) In class I said that getting “a line” of character data (a sequence of characters
read from a file or standard input ending with the end-of-line character) was surprisingly
difficult and error-prone in C. Propose and implement a function or functions that gets a full
line of character data in a way that does not limit the length of the input data but also does
not risk overflowing an array, and submit it/them with a short program that could be used
to test it/them. (You will almost surely need malloc to make this work. You can use library
functions, but only ones that are in the standard C library — so you can’t just use the GNU
extension getline.)

8. (Up to 20 points) Write a C program to solve a problem that seems interesting to you. How
much credit you can get depends on difficulty – solving a relatively easy problem is worth
fewer points than solving a more difficult one, and programs that are well-structured will get
more points than those that are less so (e.g., good use of functions will get you more points, as
will writing C-idiomatic code). Include comments in your program that explain what problem
it solves and what input it needs from the user (command-line arguments, input files, input
from stdin). If you have an idea for this problem but aren’t sure how much credit you could
get, ask me by e-mail.

6

