
CSCI 1120 February 1, 2017

Slide 1

Administrivia

• Reminder: Homework 3 due today.

If you can’t finish completely by the due date/time, but you have something

that represents at least a good start, send me what you have and submit a

revised/improved version as soon as you can. You lose fewer points that way,

I think you learn more, and I’d rather grade code that works than code that

doesn’t!

• Sample solution to Homework 2 posted (also Homework 1, though it’s kind of

trivial), linked from bottom of “lecture topics and assignments” page.

• Homework 4 on the Web; due in two weeks. Both problems should be doable

with material covered through today, but I plan to talk more about library

function rand(), used in the second problem, next time.

Slide 2

More Administrivia

• If you wonder about the fact that the e-mail address TMail shows for me isn’t

the same as the one I give in my course materials — it’s a long story, but you

can use either one.

Also, no need to put your name in subject lines when turning in homework or

minute essays — enough to say which course and which assignment (e.g,

“hw1” or “minute essay”).

• For what it’s worth: Some of you give your programs names that include your

name. If it helps you, go ahead, but I grade each person’s work in a separate

directory, so there should be no risk of confusion. (Over the years I’ve worked

up a semi-automated system for grading programming assignments. More

about it on request?)



CSCI 1120 February 1, 2017

Slide 3

Minute Essay From Last Lecture

• Many people mentioned those pesky semicolons. Agreed that coming from

Scala it’s hard to remember them! (But one Java programmer liked them!)

• Some people had seen this problem solved in other languages so found the

logic easy to get right; others had to think a bit. (I hoped most would have

seen it already.)

• “C is very picky.” Isn’t it just.

• Some online sources discourage use of scanf. There are reasons for

getting input other ways, but I say they have their problems too. It it annoying

that it doesn’t detect overflow.

• #define was interesting or unfamiliar — syntax is so different that it must

be different in some basic way? Yes — “preprocessor directive” as opposed

to regular code.

Slide 4

Repetition — Loops

• C, like most/many procedural languages, offers several syntaxes for repetition.

Recursion (discussed already) is one, but often not the most straightforward.

• All have some way of expressing common elements (explicitly, rather than the

“do for all” syntax allowed by some languages):

– Initializer (as its name suggests).

– Condition (determines whether repetition continues).

– Body (code to repeat).

– Iterator (something that moves on to next iteration).

• Worth noting that C, being fairly minimalist, doesn’t offer some of the nice

features for repetition Scala does.



CSCI 1120 February 1, 2017

Slide 5

while Loops

• Probably the simplest kind of loop. You decide where to put initializer and

iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

while (n <= 10) { /* condition */

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?

Slide 6

for Loops

• Probably the most common type of loop. Particularly useful for anything

involving counting, but can be more general. Syntax has explicit places for

initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

for (int n = 1; n <= 10; ++n) {

printf("%d\n", n);

}

• Initializer happens once (at start); condition is evaluated at the start of each

iteration; iterator is executed at the end of each iteration. (Note that C89

standard required that n be declared outside the loop.)



CSCI 1120 February 1, 2017

Slide 7

do while Loops

• Looks very similar to while loop, but test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

do {

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

} while (n <= 10); /* condition */

Slide 8

Loops — Example

• Simple example — loop to read integers and compute their sum. (Don’t we

need a place to store them all? No!)

• (Variant of example in book.)



CSCI 1120 February 1, 2017

Slide 9

Arrays — from CS1

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many

numbers/characters and give a common name to all. You can then reference

an individual element via its index (similar to subscripts in math).

Slide 10

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

C89, it had to be a constant. In C99, it can be a variable — “variable-length

array”.)

• Alternatively, give “initializer” (list of values) and let compiler figure out size:

int nums[] = { 2, 4, 6, 8 };



CSCI 1120 February 1, 2017

Slide 11

Arrays in C, Continued

• Arrays whose size isn’t known at runtime — in C89, only with dynamic

memory allocation (to be discussed later).

C99 also allows “variable-length arrays” — arrays declared as usual but with

dimensions specified at runtime.

• These are nice for arrays of reasonable size but not so great for large arrays,

as we’ll discuss later.

Slide 12

Arrays in C, Continued

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)

• So far nothing new, just different syntax. But . . .



CSCI 1120 February 1, 2017

Slide 13

Arrays in C, Continued

• C’s support for arrays is — no surprise? — minimalist, sort of a thin veneer

over the implementation (in which you get a contiguous chunk of memory and

a name you can use to reference it).

• One aspect — they’re not “first-class objects” and don’t “know” their length (!).

• Also . . . We said if you declare an array to be of size n you can reference

elements with indices 0 through n− 1. What happens if you reference

element -1? n? 2n?

• Well, the compiler won’t complain. At runtime, the computer will happily

compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it’s not (i.e., it’s “out of bounds) . . .

Slide 14

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable” (“undefined behavior” in C-speak). Maybe it’s

outside the memory your program can access, in which case you may get the

infamous “Segmentation fault” error message (or with newer compilers you

may get a screenful of equally cryptic messages).

Almost worse is if it’s not — then what’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. This is the essence of the buffer overflows you hear

mentioned in connection with security problems.

• Why this behavior? Well, C was designed to compile to efficient code, and

checking indices “costs”. If you want it, put it in! (And very often you should.)



CSCI 1120 February 1, 2017

Slide 15

Arrays — Examples

• (First a very silly example showing what happens when you reference an

out-of-bounds index.)

• A familiar(?) thing to do with a collection of data — sort it.

• So let’s sketch a program to sort an array. For now, have the program

generate the data using rand().

Slide 16

Minute Essay

• What did you find interesting, difficult, or otherwise noteworthy about

Homework 3?


