
CSCI 1120 February 8, 2017

Slide 1

Administrivia

• Reminder: Homework 4 due next week.

Slide 2

Minute Essay From Last Lecture

• Lots of interesting answers but no particular trends — except that several

people mentioned having trouble coming up with a nice solution. Curiously

enough, few people did the simple obvious thing (just have an “if” for each of

the six possible cases). “Hm!”?

CSCI 1120 February 8, 2017

Slide 3

gcc Tip

• I say always always compile with -Wall — six extra keystrokes, or not even

that if you remember about the up arrow in bash (shell).

• And then do something about warnings — almost all indicate a potential

problem. (If you can’t figure out what, ask! if nothing else asking me by e-mail

works though isn’t as immediate.)

• (The first thing I usually do when students ask why their code doesn’t work is

to ask them to recompile with this option. It’s surprising how often it warns

about something that turns out to be the source of the problem!)

Slide 4

Arrays — Review/Recap

• As in other languages, arrays give you a way to create the an indexed

collection with all elements of the same type.

• Unlike most modern(?) languages, arrays in C are a thin veneer over the

implementation and lack safety checks and object-oriented features such as

built-in length.

• (Example from last time — sort demo/test — not complete, but I will fill in

some parts and post revised version.)

CSCI 1120 February 8, 2017

Slide 5

A Very Little About “Random” Numbers

• Homework 4 asks you to work with the library functions srand() and

rand(). A few words about what they do . . .

• First, what we mean by “random” is (I think!) an interesting question with no

obvious answer. What’s often wanted is something that can’t be predicted,

and it’s not clear we can get that with a system that’s deterministic. Further,

even if we could, we might not want that, since we often want to be able to

repeat a test.

• So, often what we really want is a “pseudo-random number generator” —

something that generates a sequence of numbers that looks random but is

repeatable given some reproducible starting point.

• Early researchers apparently thought more-complex algorithms would give

better results, but — not necessarily. Very simple algorithms can give quite

good results.

Slide 6

A Very Little About “Random” Numbers, Continued

• Lots of uses for “random” sequences (e.g., so-called “Monte Carlo” methods

for simulating things), so many libraries include function(s) to produce them.

• Typical library provides some way to set the starting point (the “seed”) and

then a function that when called repeatedly produces the sequence —

srand() and rand() in standard C. Mostly these produce a large range

of possible values. (Why is this good?)

• Some libraries also provide functions to map the full range to a smaller one

(e.g., to simulate rolling a die). C doesn’t, but there are some semi-obvious

approaches. The problem on Homework 4 asks you to do a simple

comparison of two of them.

CSCI 1120 February 8, 2017

Slide 7

Pointers in C — Overview

• C, in contrast to Scala and Java and Python, makes an explicit distinction

between things and pointers-to-things.

• In Python and Scala variables are pointers/references to objects, and you

deal with them fairly abstractly. In Java, variables are either references to

objects, or primitives, but one or the other.

• In C, you can have variables that are “things” (integers, floating-point

numbers, etc.) and variables that are “pointers to things” (in some ways more

like variables in Python and Scala, but very low-level and with fewer safety

checks).

Slide 8

Pointers in C — Overview Continued

• That is, in C, pointers can be thought of as memory addresses (indices into

large one-dimensional memory space — not always strictly true but a good

first approximation), though declared to point to variables (or data) of a

particular type.

• Example types:

int * pointer to int;

double * pointer to double;

CSCI 1120 February 8, 2017

Slide 9

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

(What do you think happens if x ptr hasn’t been initialized?)

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in languages more concerned with safety. Potentially risky but

sometimes useful.

Slide 10

Parameter Passing in C — Review

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as you would want to

do in, say, a sort function). Why “apparent exception”? because really what’s

being passed to the function is not the array but a pointer! so the copying

produces a second pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

CSCI 1120 February 8, 2017

Slide 11

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• (The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.)

• (Example?)

Slide 12

Pointers Versus Arrays

• In almost all contexts arrays and pointers are interchangeable.

• In particular, if you declare the type of a function parameter to be a pointer,

you can pass it an array, and vice versa.

CSCI 1120 February 8, 2017

Slide 13

Strings in C — Overview

• C has a data type char, used for much the same purposes as characters in

other language, but with a smaller minimum range (enough to represent 7-bit

ASCII but not Unicode).

• C “strings” are null-terminated arrays of characters and can be worked with as

arrays or using pointers. There are standard library functions for doing (some)

things with characters and strings.

• (Examples as time permits.)

Slide 14

Minute Essay

• Do you remember to compile with -Wall? and if so, do you try to fix

anything being warned about? I ask because I got a fair amount of code for

Homework 3 that gave warnings . . .

• Any other questions — about pointers, strings, anything else?

