
CSCI 1120 February 22, 2017

Slide 1

Administrivia

• Reminder: Homework 5 due next week.

• Examples from last week’s class on sample programs page now (sorry about

the delay).

Slide 2

Minute Essay From Last Lecture

• Some people commented on how this assignment was a little more difficult, or

longer, or something, than previous ones — “not just an exercise in syntax”.

True. Reflected in how many points it’s worth?

• A few people commented on how they weren’t sure they understood the

algorithm(s). Be advised that in my opinion it’s a useful skill to be able to

translate math algorithms into code even if you can’t completely understand

them (though complete understanding is a plus).

• A couple of people mentioned -Wall as being helpful. (Indeed.)



CSCI 1120 February 22, 2017

Slide 3

Character-Oriented I/O in C

• Two useful functions to know about: getchar and putchar.

• Both treat characters as integers (which is allowed). getchar returns a

special value, EOF, at “end of file”. How to signal this when standard input is

from keyboard is system-dependent — often(?) control-D on UNIX-like

systems.

Slide 4

I/O in C — Recap

• getchar and putchar provide simple character-at-a-time I/O to

standard input/output.

• printf and scanf provide more sophisticated functionality, but again for

standard input/output.

• Reading text strings safely is surprisingly difficult, so I say when you can read

text a character at a time it may make sense to do so (as in one of the

problems on Homework 5).

• I/O redirection provides one way to work with files. Is there something more

general? Yes. (“Of course”?)



CSCI 1120 February 22, 2017

Slide 5

File I/O — Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Slide 6

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .



CSCI 1120 February 22, 2017

Slide 7

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

Slide 8

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc provide single-character input and output.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)



CSCI 1120 February 22, 2017

Slide 9

Reading Text Strings

• As noted previously, getting text-string input is surprisingly tricky. scanf (or

fscanf) seems like an obvious choice, but it has limitations. Getting a

whole line is probably better, and for that fgets() is the better choice.

• Because of this, I think it’s simpler to pass such things as filenames as

command-line arguments.

Slide 10

Simple Examples

• First do a simple example of character-oriented I/O, using getchar and

putchar for a first version and then fgetc and fputc.

• Then try an example (a revised program to sum inputs) of using fscanf

and fprintf to read/write integers. Notice that fscanf “fails” in two

situations — end of file and bad input. One way to tell which has happened is

with feof(), which returns “true” at EOF. Notice that this function only

returns “true” after you’ve tried to read something but EOF was detected.

(Some published examples get this wrong!)



CSCI 1120 February 22, 2017

Slide 11

Pointers and Strings in C — One More Example

• (Time permitting.) An interesting(?) example might be a function that

determines whether a string is a palindrome, defining “palindrome” such that

non-letter characters don’t matter nor does case.

Slide 12

Minute Essay

• Did you buy a copy of the recommended-but-not-required textbook, and if so

are you finding the assigned readings helpful? If instead you’re reading

sections of that online tutorial, are they helpful?


