
CSCI 1120 March 29, 2017

Slide 1

Administrivia

• Homework 7 on the Web; due in two weeks. This one also may take you

some time, but it will give you more practice with pointers, in the context of a

linked data structure.

Slide 2

Minute Essay From Last Lecture

• It sounds like many people found Homework 6 challenging (but it was meant

to be).

• The goal was for you to understand pointers better, and some said it helped,

others I’m not sure. One person said that so far it had “elucidated [his] lack of

knowledge” — I hope that changed.

• Some students apparently had some trouble understanding what the program

was supposed to do. “Hm!”?

• Note that the way the program asks you to sort text isn’t maybe the one most

people would come up with first, nor is it how you’d likely to it in a language

that gives you more — but I say mimicking how they work is a lot of trouble in

C, so better to try something different.



CSCI 1120 March 29, 2017

Slide 3

Sorted Linked List Example, Continued

• (Finish most code — insert, print, “remove all”. Completed version online after

class.)

Slide 4

One More Useful Tool — valgrind

• The downside of managing memory with malloc and free is that getting

it right is not easy, and sometimes problems don’t show up right away.

• valgrind can check for a lot of potential errors — including errors in use

of malloc and free.

• Compile with -g and -O0 and

valgrind executable-name

(The Makefile for the example shows how to remake the executable with

these flags.)



CSCI 1120 March 29, 2017

Slide 5

Binary Search Trees — Review?

• In general, “trees” in computer science are a special type of “graph”

(collection of nodes connected by edges). In a tree, one node is called the

root and has any number of outgoing edges but no incoming edges; other

nodes have one incoming edge and any number of outgoing edges.

Terminology — parent, child, leaf node. Each node can store some data.

• They’re useful for representing hierarchies of various kinds (e.g., the

files/directories in a file system).

• “Binary trees” are trees in which each node has at most two children.

• “Binary search trees” are binary trees where the data is something that can

be ordered, and for each node, everything in its left subtree is “smaller” while

everything in its right subtree is “larger”. This makes them good for storing a

sorted collection that needs to grow/shrink.

Slide 6

Binary Search Trees — Operations

• With all trees, various kinds of “traversal” (visit all nodes) are possible. For

BSTs, “in-order” (left subtree, then root, then right subtree) gives you the data

in sorted order (why?). Easy to describe recursively; without recursion pretty

tricky.

• “Insert” is not too hard and can be described recursively: Inserting into an

empty (sub)tree just means adding the thing to insert as the root node.

• “Find” is also not too bad and easy to describe recursively.

• “Remove” is much more difficult — some cases are easy (removing a leaf),

but the case of removing a node with two children is tougher. What works is

to replace the node to remove with either the largest element of its right

subtree or the smallest element of its left subtree.



CSCI 1120 March 29, 2017

Slide 7

Minute Essay

• Have you seen binary search trees in another course? (I think they’re usually

in CS2 and possibly in Discrete Structures or Functional Languages as well.)


