
CSCI 1120 April 5, 2017

Slide 1

Administrivia

• Reminder: Homework 7 due next Wednesday.

One more homework. (So we’re close to being done!)

Slide 2

Minute Essay From Last Lecture

• Most people had seen BSTs — apparently they’re just now being covered in

CS2 — so that’s good. If you’re one of the exceptions, the homework writeup

has some suggestions, or please come talk to me.



CSCI 1120 April 5, 2017

Slide 3

Data Representation — “It’s All Ones and Zeros”

• At the hardware level, all data is represented in binary form — ones and

zeros. (Why? hardware for that is simpler to build.)

• How then do we represent various kinds of data? First a short review of

binary numbers . . .

Slide 4

Binary Numbers

• Humans usually use the decimal (base 10) number system, but other

(positive integer) bases work too. (Well, maybe not base 1.)

• In base 10, there are ten possible digits, with values 0 through 9.

In base 2, there are 2 possible digits (“bits”), with values 0 and 1.

• Everything in base 2 works the same as base 10, if you think about how

base 10 actually works, so to speak.



CSCI 1120 April 5, 2017

Slide 5

Computer Representation of Integers

• So now you can probably guess how non-negative integers can be

represented using ones and zeros — number in binary. Fixed size (so we can

only represent a limited range).

• How about negative numbers, though? No way to directly represent

plus/minus. Various schemes are possible. The one most used now is two’s

complement : Motivated by the idea that it would be nice if the way we add

numbers doesn’t depend on their sign. So first let’s talk about addition . . .

Slide 6

Machine Arithmetic — Integer Addition and Negative

Numbers

• Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we

easily get 0 when we add −n and n.

Computing −n is easy with a simple trick: If m is the number of bits we’re

using, addition is in effect modulo 2m. So −n is equivalent to 2m − n, which

we can compute as ((2m − 1)− n) + 1).

• So now we can easily (?) do subtraction too — to compute a− b, compute

−b and add.



CSCI 1120 April 5, 2017

Slide 7

Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.

Slide 8

Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point.

• Idea is similar to scientific notation — represent number as a binary fraction

multiplied by a power of 2:

x = (−1)sign × (1 + frac)× 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the

other two fields varies — e.g., for usual single-precision, 8 bits for exponent

and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.

• Current most common format — “IEEE 754”. Read up on it sometime

(Wikipedia article seems okay) — lots of “who knew?” details!



CSCI 1120 April 5, 2017

Slide 9

Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some

properties not completely shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers

can’t. Also, some quantities that can be represented easily in decimal can’t be

represented in binary.

• Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)

• (Two “floating point is strange” examples.)

Slide 10

Computer Representation of Text

• We talked already about how “text strings” are, in C, arrays of “characters”.

How are characters represented? Various encodings possible.

• One common one is ASCII — strictly speaking, 7 bits, so fits nicely in smallest

addressable unit of storage on most current systems (8-bit byte).

• Another one is Unicode — originally 16 bits (Java’s char type), now more

complicated. (Again, Wikipedia article seems okay.)

• Either encoding can be considered as “small integers”.

• C’s char type often ASCII but doesn’t have to be. (Older systems use(d)

EBCDIC, an encoding rooted in punched cards.) C also has wchar t,

which could be Unicode.



CSCI 1120 April 5, 2017

Slide 11

Minute Essay

• I don’t have a definite plan for the next two classes, but some things we could

look at are multithreading (OpenMP and/or Pthreads) or text-mode full-screen

processing with ncurses. Or — other requests?


