
CSCI 1120 April 19, 2017

Slide 1

Administrivia

• If you haven’t turned in a final/working version of Homework 7, don’t give up

— I’ll accept late submissions through Friday at least, and you’ll get full or

near-full credit if you turned in something plausible earlier.

• There will be a set of extra-credit problems, assigned probably this weekend (I

will send mail), to be due toward the end of finals period.

Slide 2

Minute Essay From Last Lecture

• Many people reported that they thought they had learned more about pointers

from Homework 7. Many people found it difficult, but a few said “not as bad as

I expected”. “Hm!”?

(This is much like what last semester’s students said. “Hm!” again?)

• Lots of interest in extra credit.



CSCI 1120 April 19, 2017

Slide 3

Full-Screen Text-Mode Programming

• As you know(?), the C standard library defines text input/output via “streams”,

but these are line-oriented.

• But at least one text-mode programs you’ve used (vim) allows for other kinds

of text I/O.

• How do they do that? various ways, none portable in the sense of working

with all standard-conforming implementations of C, but the ncurses library

is fairly standard in UNIXworld.

• (Examples on “sample programs” page.)

Slide 4

Other Useful(?) C Libraries

• readline to provide command history and some simple editing. (Probably

not standard C but probably widely available. man readline for some

info.)

• “X11 library” for fairly low-level graphics programs. (I’m not finding a good

man-page starting point, but your favorite search engine . . . ) Several

third-party toolkits that build on it. Nothing completely portable, alas, but

remember that C’s supposed to be implementable on a very wide range of

hardware.

(Example next time?)



CSCI 1120 April 19, 2017

Slide 5

Tools Revisited — Compiling C

• One person asked about “other ways to compile C programs”. Not sure what

was meant, but . . .

• For non-trivial programs, my guess is that most people use something to

automate the build process — makefiles on UNIX-like systems, probably other

tools on other platforms, and there are probably some IDEs one could use.

• For small programs, since it’s tedious to remember all the useful

command-line options, I say either use a makefile (such as the simple one on

the “sample programs” page) or a script (an example also under “sample

programs”).

Slide 6

Tools Revisited — Text Editors

• One person asked about vim tips. At this point it may not do you much good,

but for future reference maybe . . .

• If mostly you just go into insert mode and type, using the arrow keys to move

around and the backspace to delete — well, it’s easy to remember but strikes

me as doing things the hard way.

• If you ever decide to ramp up your skills — try vimtutor again, or the

online help (:help).

In particular look for ways of searching and ways of doing cut/copy/paste, and

in general vim’s notion of “motion commands”. You will probably like “visual

mode”.



CSCI 1120 April 19, 2017

Slide 7

Tools Revisited — vim Tips

• % to find matching parentheses.

• * to find next occurrence of “word” under cursor; n to find others.

• Re-indentation (tidying things up). == to do the current line; gg=G to do the

whole file (gg says “go to top of file”, = says apply the reindent operation, G

says do that until end of file).

Slide 8

Minute Essay

• None really, unless there are other questions I could answer next time about

C or anything else from the class?


