
CSCI 1120 August 29, 2018

Slide 1

Administrivia

• About minute essays: In addition to answering whatever questions I ask, feel

free to ask me, well, anything (preferably related in some way to the course or

computing).

• Reminder: Homework 1 due today (11:59pm).

• Homework 2 on the Web; due next week. Not algorithmically challenging, but

the first program in a new language doesn’t need to be?

• Most (non-trivial) code from class will be on the course Web site, under

“sample programs”.

• ACM tutoring available for this class. Hours this semester are M/T/W/R 5pm

to 9pm in 270A and 270L, F and weekend by appointment. (This is not news

to you if you’re subscribed to CSMajors. If you’re not, maybe you should be?

Link from www.cs.trinity.edu.)

Slide 2

Homeworks

• For each homework you will be asked to turn some files (usually source code,

though not for the first assignment), by e-mail, with each file as an

attachment. In the assignment I say to send them to me at

cs.trinity.edu, or you can use my TMail address.

• If you’re working in one of our labs this should be easy. If you’re working

remotely you can try my mail-files script, available on the “sample

programs” page. This mails from the command line.



CSCI 1120 August 29, 2018

Slide 3

Homeworks, Continued

• You will also be asked for two more things, which you can put in the body of

the e-mail or in another file you send me (might be helpful if using

mail-files script):

– An explicit honor-code pledge and a statement about any collaboration or

help (if none, say so).

– A sentence or two reflecting on what if anything was noteworthy about the

assignment.

Slide 4

Programming Basics (as described in CS1)

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Nowadays, “programming” as we will use it means writing source code in a

high-level language. Source code is simply plain text, which . . . At this point

we diverge from the explanation for beginners. Exactly what happens to get

from source code to something the computer can execute varies among

languages . . .



CSCI 1120 August 29, 2018

Slide 5

From Source Code to — What?

• Some high-level languages (such as the language understood by typical

UNIX/Linux command shells) are directly interpreted by some other program.

• Others are compiled into object code (machine language) and then linked

with other object code (including system libraries) to form an executable

(something the operating system can execute).

• Still others (including Scala, Java, and sometimes Python) take an

intermediate approach — initially compiled into byte code (object code for a

made-up processor), which is (in principle) interpreted by a runtime system,

with system library code brought in at runtime. (In practice, a “just-in-time”

compiler may translate byte code into native object code on the fly.)

Slide 6

A Little About C

• Many languages you encounter these days were designed to provide a

relatively-easy-to-use environment that’s the same from platform from

platform. Full implementation may require a fairly featureful platform (e.g.,

ability to support graphics).

• C, in contrast, was designed to be easier to use and more portable than

assembly language, while still being implementable on a very wide range of

platforms in a way that produces programs that are as efficient as is

reasonably possible. The language standards define things all

implementations must do while leaving some details (e.g., sizes of various

numeric types) up to the implementer. Note that there have been multiple

official standards (C89, C99, etc.), and later standards include more features.



CSCI 1120 August 29, 2018

Slide 7

A First C Program

• Previously we wrote a “hello world” program and compiled and executed it.

• Look at it a little more closely . . .

First notice that C programs, unlike Scala and Python scripts but like Java,

typically include some standard boilerplate that while required is tedious at

best to try to explain to beginners. I’ll try now, but some things will likely make

more sense later.

Slide 8

A First C Program, Continued

• First line is a “pre-processor directive”. These begin with #, typically do some

sort of simple text manipulation, and are processed by the first phase of

compilation. This one is needed to use printf.

• Next is a definition of a function main. All complete C programs must

contain one of these, and it’s the function that is executed when you run your

program. The integer returned is passed back to the calling environment as

an exit status.

We’ll talk more about defining functions, but for now note that the concepts

are likely familiar (give it a name, define parameters and return type), just

expressed with a different syntax.

• Inside the function is a call to a library function to print some text (more about

it later) and an explicit statement to return a value.



CSCI 1120 August 29, 2018

Slide 9

Variables in C

• As in other languages, to do anything interesting in a program, we need some

place to store input and intermediate values — “variables”.

• In C, variables must be declared, with a name and a type. (Contrast with

Scala, Python.) In old-style C, all declarations must come before any code.

• Variable names follow rules for identifiers — letters, numbers, and

underscores only, must start with letter or underscore, preferably letter.

Case-sensitive.

• Is there anything like Scala’s val versus var? Not exactly. Variables with

const modifier cannot be directly assigned new values, but there are ways

to evade this restriction using pointers. (More about pointers later.)

Slide 10

Types in C

• Integer types include int, short, long. (All can be declared

unsigned too.) Unlike in some language (such as Java and Scala), sizes

not strictly defined — e.g., a Java int is exactly 32 bits, but a C int may be

more, or even less. (Why? to allow implementations to use whatever is most

efficient.)

• Floating-point types include float, double. Binary equivalent of

scientific notation (with exponent and mantissa). Minimum size for double

is larger than for float so allows more significant figures, larger range.

• More about other types later.



CSCI 1120 August 29, 2018

Slide 11

Expressions in C

• C (like many other programming languages) has a notion of an expression.

• Every expression has a value, and computing this value is called evaluating

the expression.

• Sometimes evaluating an expression also produces changes to variables in

the expression or other variables; these are called side effects. E.g., a call to

printf is an expression; evaluating it produces a result (yes, really!) and a

side effect.

• Many, many operators of different kinds. For now we’ll look only at the ones

for arithmetic.

Slide 12

Arithmetic Expressions — Operators

• Usual arithmetic operators +, -, * (multiplication), / (division). (+ and - can

be unary too.)

Notice that division, applied to integers, discards any remainder. This is so

the result will be an integer too, and can even be useful. What if you want a

fraction? Later.

• Also % operator for getting remainder; e.g., x % 2 is 0 if x is even, 1 if it’s

odd.

• Other useful arithmetic operators include pre/post increment/decrement, bit

shifts.



CSCI 1120 August 29, 2018

Slide 13

Pre/Post Increment/Decrement

• (These four operators are likely new to Scala programmers.)

• x++ and ++x both have the side effect of adding 1 to x, but considered as

expressions they have different values (before-increment and after-increment

respectively). Similarly for x-- and --x.

• Often used solely for side effect (e.g., as a substitute for the more-verbose

x+=1), but not always (i.e., sometimes used in contexts where expression

value matters too).

Slide 14

Simple Output

• Simple/typical way to produce output (to “standard output” — by default,

terminal) is with library function printf.

• Parameters are “format string”, which may include “conversion specifications”,

followed by zero or more expressions, one for each conversion specification.

E.g., to print value of int variable x:

printf("the value of x is %d\n", x);

• Full details in man page for printf. (Find with man 3 printf.)



CSCI 1120 August 29, 2018

Slide 15

Simple Input

• Simple way to get integer/float input (from “standard input”) is with library

function scanf.

• Parameters are “format string” (similar to the one for printf) and list of

pointers (more later) to variables, e.g.:

scanf("%d %d", &var1, &var2);

Slide 16

Simple Input — scanf Caveats/Disclaimers

• Not the right tool if you want to write really good code to get user input and

check for errors. But that’s surprisingly difficult, perhaps more so in C. Simple

and widely used, however, and I think good enough for our purposes, for

numeric types anyway. (More about strings later.)

• Behaves somewhat like library functions for reading from standard input in

other languages, except that it skips whitespace (including newlines) and

stops when it encounters something other than what it needs (e.g.,

non-numeric characters when number is wanted).

• Error checking is somewhat minimal: Considered as an expression, call to

scanf has a value, namely the number of variables successfully read.

Programmer must check this for expected value. (More about this soon.)



CSCI 1120 August 29, 2018

Slide 17

Compiling with gcc — A Tip

• With the extra flag -Wall, gcc will potentially print more warnings about

code that is legal but may not work as intended.

• These messages can be very helpful! so I recommend that you always

always use it — e.g.,

gcc -Wall hello.c

(I’ll have suggestions for additional flags later; this will do for now.)

Slide 18

Minute Essay

• What are you planning to do about the textbook? if you want to buy hardcopy

from the bookstore — do they have them in yet?

• Any questions?


