
CSCI 1120 September 12, 2018

Slide 1

Administrivia

• Reminder: Homework 3 due today.

• Homework 4 on the Web. Due in two weeks. You should be able to do the first

problem after today’s class; you might want to wait on the second until after

next week’s class, though you could start earlier if you like.

Slide 2

Minute Essay From Last Lecture

• Responses to the question about recursion varied — some people felt

comfortable with it, others had learned it but forgotten a lot, and it was new to

the few who haven’t taken CS1. The recursion needed for Homework 3 is a

simple form so I hope will not (did not?) stress anyone.



CSCI 1120 September 12, 2018

Slide 3

Homework 2 Essays, Etc.

• Pretty much everyone got full or nearly-full credit. Yay! A good start.

• Some people mentioned finding the math a little more complicated than they

thought. Others found it easy. “Hm!”?

• One person mentioned using const variables rather than #defines to

define constant values. Arguably it’s better in that variables have types. I tend

to use #define because it’s more traditional-idiomatic in C.

• One person commented that he thought learning a second programming

language would be as hard as learning a first, but it’s not. Yes! and a good

thing, too.

• Only one person mentioned semicolons, though for Scala programmers they

seem to be easy to forget.

Slide 4

Simple I/O, Revisited

• Doing a really good job with interactive input is surprisingly tricky — what

constitutes an error, how do you prompt user to try again.

• So for this class we’ll focus on some simple safety checks: if input should be

numeric it is, and values make sense for the program (e.g., inputs to GCD

program are not both 0). I like to always print input values so users can at

least confirm that what they thought that typed in is what the program read.

• Some online sources discourage use of scanf. There are reasons for

getting input other ways, but I say they have their problems too. It is annoying

that it doesn’t detect overflow, but oh well.

• For this class it’s usually best to just bail out on bad input, rather than retrying.

(And if you do anything else on homework, it breaks my semi-automated

testing.)



CSCI 1120 September 12, 2018

Slide 5

Repetition — Loops

• C, like most/many procedural languages, offers several syntaxes for repetition.

Recursion (discussed already) is one, but often not the most straightforward.

• All have some way of expressing common elements (explicitly, rather than the

“do for all” syntax allowed by some languages):

– Initializer (as its name suggests).

– Condition (determines whether repetition continues).

– Body (code to repeat).

– Iterator (something that moves on to next iteration).

• Worth noting that C, being fairly minimalist, doesn’t offer some of the nice

features for repetition Scala does.

Slide 6

while Loops

• Probably the simplest and most general kind of loop. You decide where to put

initializer and iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

while (n <= 10) { /* condition */

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?



CSCI 1120 September 12, 2018

Slide 7

for Loops

• Probably the most common type of loop. Particularly useful for anything

involving counting, but can be more general. Syntax has explicit places for

initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

for (int n = 1; n <= 10; ++n) {

printf("%d\n", n);

}

• Initializer happens once (at start); condition is evaluated at the start of each

iteration; iterator is executed at the end of each iteration. (Note that C89

standard required that n be declared outside the loop.)

Slide 8

do while Loops

• Looks very similar to while loop, but test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

do {

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

} while (n <= 10); /* condition */



CSCI 1120 September 12, 2018

Slide 9

Loops — Example

• Simple example — loop to read integers and compute their sum. (Don’t we

need a place to store them all? No!)

• (Variant of example in book.)

Slide 10

Arrays — from CS1

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many

numbers/characters and give a common name to all. You can then reference

an individual element via its index (similar to subscripts in math).



CSCI 1120 September 12, 2018

Slide 11

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

C89, it had to be a constant. In C99, it can be a variable — “variable-length

array”.)

• Alternatively, give “initializer” (list of values) and let compiler figure out size.

Example:

int nums[] = { 2, 4, 6, 8 };

Slide 12

Arrays in C, Continued

• Arrays whose size isn’t known at runtime — in C89, only with dynamic

memory allocation (to be discussed later).

C99 also allows “variable-length arrays” (VLAs) — arrays declared as usual

but with dimensions specified at runtime.

• These are nice for arrays of reasonable size but not so great for large arrays,

as we’ll discuss later.

• Note also that while C++ is almost a strict superset of C, VLAs are one C99

feature that isn’t in C++. But there are good alternatives in the standard C++

library.



CSCI 1120 September 12, 2018

Slide 13

Arrays in C, Continued

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)

• So far nothing new, just different syntax. But . . .

Slide 14

Arrays in C, Continued

• C’s support for arrays is — no surprise? — minimalist, sort of a thin veneer

over the implementation (in which you get a contiguous chunk of memory and

a name you can use to reference it).

• One aspect: They’re not “first-class objects” and don’t “know” their length (!).

• Also . . . We said if you declare an array to be of size n you can reference

elements with indices 0 through n− 1. What happens if you reference

element -1? n? 2n?

• Well, the compiler won’t complain. At runtime, the computer will happily

compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it’s not (i.e., it’s “out of bounds) . . .



CSCI 1120 September 12, 2018

Slide 15

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable” (“undefined behavior” in C-speak). Maybe it’s

outside the memory your program can access, in which case you may get the

infamous “Segmentation fault” error message (or with newer compilers you

may get a screenful of equally cryptic messages).

Almost worse is if it’s not: What’s at the computed memory address might be

some other variable in your program, which will then be accessed/changed.

This is the essence of the buffer overflows you may hear mentioned in

connection with security problems.

• Why this behavior? Well, C was designed to compile to efficient code, and

checking indices “costs”. If you want it, put it in! (And very often you should.)

Slide 16

Arrays — Examples

• (Very silly example illustrating defining and using an array, including what

happens when you reference an out-of-bounds index.)



CSCI 1120 September 12, 2018

Slide 17

Minute Essay

• If your solution to Homework 2 made use of constants such as 3600 for

seconds per hour, did you get them from computing them (60 times 60) or

from your favorite search engine? (I’m curious!)


