CSCI 1120 September 26, 2018

Administrivia

e Reminder: Homework 4 due today.

e Homework 5 on the Web. Due next week.
One problem asks you to fill in the body of a function to sort an array, which
should be straightforward if you remember learning about sorting in CS1 (and
Slide 1 if you don’t, ask me about supplemental reading).
The other problem involves strings and may be — if not algorithmically

challenging, at least somewhat interesting?

Minor C Programming Tip

e In some of the sample programs, main () returns EXIT_SUCCESS or
EXIT_FAILURE. These are constants defined in stdlib.h and
somewhat more guaranteed to be more portable than 0 or 1 (not to mention

that they make it clearer what’s being done?).

Slide 2

CSCI 1120 September 26, 2018

4)

Pointers — Review

e Pointers are, roughly speaking, memory addresses. Useful in many contexts.
If they don’t make sense to you yet, practice using them may help?

Slide 3

(Sidebar: “Undefined Behavior” in C h

e You may have noticed that if you try to input a really large value with scanf
you don’t get either the right value or any kind of error.

e You might also notice that strange things happen when you try to compute a
fairly large number using an int. (This is easy to do with our factorial

Slide 4 program.)

e Both examples of what C calls “undefined behavior”. Means that the language

doesn’t say what’s supposed to happen. Might be different depending on
compiler and options!

e Out-of-bounds array accesses? Undefined behavior.

e Statements that modify the same variable twice (e.g., 1 = 1++))?
Undefined behavior.

CSCI 1120 September 26, 2018

“Undefined Behavior” in C, Continued

e Since language makes no guarantees about what will happen, careful
programmers do their best to avoid undefined behavior. (And non-careful
programmers should probably avoid C.)

e Out-of-bounds array access should be easy if tedious to avoid.

Slide 5 e Arithmetic overflow may be harder to avoid, though with some extra code it’s

(usually?) possible.

Characters and Strings in C

e C has a data type char, used for much the same purposes as characters in
other language, but with a smaller minimum range (enough to represent 7-bit
ASCII but not Unicode).

e C “strings” are arrays of characters, ending with “null character” (\ 0).

Slide 6 Can be worked with as arrays or using pointers.

There are standard library functions for doing (some) things with characters

and strings.

e (Example — several ways to write a “string length” function.)

CSCI 1120 September 26, 2018

Characters and Strings in C — Library Functions

e C’s standard library is pretty limited but does contain some useful functions
for operating on character/string data.

® Some useful ones are 1 sdigit etc. for characters and strlen,
strcmp, strchr, and strstr for strings.

Slide 7 (Notice that you need st rcmp to compare strings for equality; == compares
pointers so generally will not do what you want.)

Strings in C — Pitfalls

e Most functions assume that strings are properly terminated. (What do you
think happens if they’re not?)

o Many functions that store into a string have no way to check that it's big
enough.

Slide 8 So getting text input from standard input safely is surprisingly difficult!
scanf can be made to check, but not (in my opinion) nicely, and it stops on
whitespace anyway. get s gets a full line, but note what gcc says when you
use it, and what's in its man page. £get s is maybe better but has its

limitations too.

CSCI 1120 September 26, 2018

4)

e In C, strings are just arrays of characters, terminated with a special character.
Other languages likely represent them as an array of characters plus a length
field. What are the advantages and disadvantages of doing it C’'s way?

Slide 9
\. J
4)
e Some things that occur to me:
— Minus: Using a special character as a delimiter means you can’t use that
character within a string. That seems like an artificial restriction.
— Minus: You need one extra character for the delimiter, and remembering to
Slide 10 reserve space for it and ensure that it's present for all strings is a bit

error-prone.

— Minus: Determining string length takes longer.

— Plus: You don’t have to decide on a size for the length field, and short
strings probably take less space if you don’t need this field.

— Plus: It's possible to work with substrings in ways that are more
cumbersome if each string needs a length field.

