
CSCI 1120 September 26, 2018

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on the Web. Due next week.

One problem asks you to fill in the body of a function to sort an array, which

should be straightforward if you remember learning about sorting in CS1 (and

if you don’t, ask me about supplemental reading).

The other problem involves strings and may be — if not algorithmically

challenging, at least somewhat interesting?

Slide 2

Minor C Programming Tip

• In some of the sample programs, main() returns EXIT SUCCESS or

EXIT FAILURE. These are constants defined in stdlib.h and

somewhat more guaranteed to be more portable than 0 or 1 (not to mention

that they make it clearer what’s being done?).



CSCI 1120 September 26, 2018

Slide 3

Pointers — Review

• Pointers are, roughly speaking, memory addresses. Useful in many contexts.

If they don’t make sense to you yet, practice using them may help?

Slide 4

Sidebar: “Undefined Behavior” in C

• You may have noticed that if you try to input a really large value with scanf

you don’t get either the right value or any kind of error.

• You might also notice that strange things happen when you try to compute a

fairly large number using an int. (This is easy to do with our factorial

program.)

• Both examples of what C calls “undefined behavior”. Means that the language

doesn’t say what’s supposed to happen. Might be different depending on

compiler and options!

• Out-of-bounds array accesses? Undefined behavior.

• Statements that modify the same variable twice (e.g., i = i++))?

Undefined behavior.



CSCI 1120 September 26, 2018

Slide 5

“Undefined Behavior” in C, Continued

• Since language makes no guarantees about what will happen, careful

programmers do their best to avoid undefined behavior. (And non-careful

programmers should probably avoid C.)

• Out-of-bounds array access should be easy if tedious to avoid.

• Arithmetic overflow may be harder to avoid, though with some extra code it’s

(usually?) possible.

Slide 6

Characters and Strings in C

• C has a data type char, used for much the same purposes as characters in

other language, but with a smaller minimum range (enough to represent 7-bit

ASCII but not Unicode).

• C “strings” are arrays of characters, ending with “null character” (\0).

Can be worked with as arrays or using pointers.

There are standard library functions for doing (some) things with characters

and strings.

• (Example — several ways to write a “string length” function.)



CSCI 1120 September 26, 2018

Slide 7

Characters and Strings in C — Library Functions

• C’s standard library is pretty limited but does contain some useful functions

for operating on character/string data.

• Some useful ones are isdigit etc. for characters and strlen,

strcmp, strchr, and strstr for strings.

(Notice that you need strcmp to compare strings for equality; == compares

pointers so generally will not do what you want.)

Slide 8

Strings in C — Pitfalls

• Most functions assume that strings are properly terminated. (What do you

think happens if they’re not?)

• Many functions that store into a string have no way to check that it’s big

enough.

So getting text input from standard input safely is surprisingly difficult!

scanf can be made to check, but not (in my opinion) nicely, and it stops on

whitespace anyway. gets gets a full line, but note what gcc says when you

use it, and what’s in its man page. fgets is maybe better but has its

limitations too.



CSCI 1120 September 26, 2018

Slide 9

Minute Essay

• In C, strings are just arrays of characters, terminated with a special character.

Other languages likely represent them as an array of characters plus a length

field. What are the advantages and disadvantages of doing it C’s way?

Slide 10

Minute Essay Answer

• Some things that occur to me:

– Minus: Using a special character as a delimiter means you can’t use that

character within a string. That seems like an artificial restriction.

– Minus: You need one extra character for the delimiter, and remembering to

reserve space for it and ensure that it’s present for all strings is a bit

error-prone.

– Minus: Determining string length takes longer.

– Plus: You don’t have to decide on a size for the length field, and short

strings probably take less space if you don’t need this field.

– Plus: It’s possible to work with substrings in ways that are more

cumbersome if each string needs a length field.


