
CSCI 1120 October 3, 2018

Slide 1

Administrivia

• Reminder: Homework 5 due today.

• Homework 6 on the Web; due in two weeks.

Slide 2

Minute Essay From Last Lecture

• (Most people said something sensible. Review answer slide?)

CSCI 1120 October 3, 2018

Slide 3

Command-Line Arguments in C — Review

• Command-line arguments are one more way to get input into a program.

• In C, command-line arguments are passed to main as an array of text

strings. So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments.

(“Plus one”? yes, argv[0] is something system-dependent, often the path

for the program’s executable.)

(Example — simple program to echo command-line arguments.)

• What if you want to get numeric input? you must convert string pointed to by

argv[i] to the type you want (more shortly).

Slide 4

Command-Line Arguments and UNIX Shells

• Be aware that most UNIX shells do some preliminary parsing and conversion

of what you type — e.g., splitting it up into “words”, expanding wildcards, etc.,

etc.

• If you don’t want that: Enclose in quotation marks or use escape character

(backslash).

CSCI 1120 October 3, 2018

Slide 5

Converting Strings to Numbers

• As noted, command-line arguments are strings. Two sets of functions for

converting.

• One (atoi etc.) is easy to use but does no error checking (so I say avoid).

• Other (strtol etc.) is more trouble but does let you check for errors.

(Improve echo program.)

Slide 6

Character-Oriented I/O in C

• Two useful functions to know about: getchar and putchar.

• Both treat characters as integers (which is allowed). getchar returns a

special value, EOF, at “end of file”. How to signal this when standard input is

from keyboard is system-dependent — often(?) control-D on UNIX-like

systems.

• (Sample program echo-text.c illustrates using these — not shown in

class.)

CSCI 1120 October 3, 2018

Slide 7

I/O in C — Recap

• getchar and putchar provide simple character-at-a-time I/O to

standard input/output.

• printf and scanf provide more sophisticated functionality, but again for

standard input/output.

• Reading text strings safely is surprisingly difficult, so I say when you can read

text a character at a time it may make sense to do so (as in one of the

problems on Homework 6).

• I/O redirection provides one way to work with files. Is there something more

general? Yes. (“Of course”?)

Slide 8

File I/O — Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

CSCI 1120 October 3, 2018

Slide 9

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

(FILE is an example of an “opaque data type” — something defined in a

library, the details of which might vary among implementations and which

should not matter to users.)

• A few streams are predefined: stdin for standard input, stdout for

standard output, stderr for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .

Slide 10

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

CSCI 1120 October 3, 2018

Slide 11

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc provide single-character input and output.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

Slide 12

Reading Text Strings

• As noted previously, getting text-string input is surprisingly tricky. scanf (or

fscanf) seems like an obvious choice, but it has limitations. Getting a

whole line is probably better, and for that fgets() is the better choice.

• Because of this, I much prefer to pass such things as filenames as

command-line arguments.

CSCI 1120 October 3, 2018

Slide 13

Simple Examples

• First do a simple example of character-oriented I/O, using getchar and

putchar for a first version and then fgetc and fputc.

• Then try an example (a revised program to sum inputs) of using fscanf

and fprintf to read/write integers. Note that fscanf “fails” in two

situations: end of file and bad input. One way to tell which has happened is

with feof(), which returns “true” at EOF. Note that this function only

returns “true” after you’ve tried to read something but EOF was detected.

(Some published examples get this wrong!)

Slide 14

Minute Essay

• Do you compile with just gcc, or gcc -Wall, or make?

