
CSCI 1120 October 10, 2018

Slide 1

Administrivia

• Reminder: Homework 6 due next week.

Slide 2

Minute Essay From Last Lecture

• No clear consensus; some people compiled using gcc with no flags; others

made one of the other choices.

• Some said they started with just gcc and then added -Wall if they ran into

problems; others that they liked the extra warnings all the time. Be advised

that it’s a quirk of C (or gcc?) that sometimes warnings indicate problems

you’d only observe if you compile with optimization (-O).

• A few people commented that it was nice not to have all programs compile to

a.out.

• If you’re interested in using make but don’t know how, it’s in the slides for

9/05.



CSCI 1120 October 10, 2018

Slide 3

Homework 4 Essays

• No clear consensus. Many people found one or both problems difficult. The

second problem seemed to give the most trouble. I keep trying to explain the

problem in a way that everyone finds clear, but without success (yet?).

• One person commented about it seeming odd to need -lm to compile (and

link!) a program using sqrt(). Why is that . . . Next slide.

• One person commented on how it seems strange to talk about generating

“random” numbers with a deterministic system. Agreed!

Slide 4

Compiling/Linking — Review/Clarification

• When you type gcc hello.c, gcc is actually doing two steps:

• In the first step (compiling), it converts your code into “object code” (binary

machine instructions plus some extra info about, e.g., function names). At this

point it doesn’t need access to code for library functions; it just needs to know

their names and signatures, typically via a .h file.

• In the second step (linking), it combines your code with library code. At this

point it needs the actual library code (as object code). For some reason,

probably historical, most of the standard C library functions are in a place

where the linker looks be default. The math functions aren’t, and -lm tells it

where to look.



CSCI 1120 October 10, 2018

Slide 5

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays, added in C99 standard, help with that, but don’t solve

all related problems:

In many implementations, space is obtained for them “on the stack”, an area

of memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).

Slide 6

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program is allowed) and have it stick around until we give it back

to the system.

(Most implementations allocate this memory “on the heap”, which is (usually?)

limited only by how much total memory the program is allowed to use.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can skip this, but not good practice, since in

“real” programs you may eventually run out of memory.)

• Python and Scala hide most of this from you — allocating space for objects is

automatic/hidden, and space is reclaimed by automatic garbage collection.

Makes for easier programming but possibly-unpredictable performance.



CSCI 1120 October 10, 2018

Slide 7

Dynamic Memory and C, Continued

• Simple examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *

20);

free(nums);

though it’s better style/practice to write

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(*some text)

* 20);

free(nums);

• Some books/resources recommend “casting” value returned by malloc.

Other references recommend the opposite! But you should check the value —

if NULL, system was not able to get that much memory.

Slide 8

• (Example — “improved” sort program.)



CSCI 1120 October 10, 2018

Slide 9

Function Pointers

• You know from more-abstract languages that there are situations in which it’s

useful to have method parameters that are essentially code. Some languages

make that easy (functions are “first-class objects”) and others don’t, but

almost all of them provide some way to do it, since it’s so useful — e.g.,

providing a “less-than” function for a generic sort.

• In C, you do this by explicitly passing a pointer to the function.

Slide 10

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const void *, const void *);

and using my compare as the last parameter to qsort.

• (Example — “improved” sort program.)



CSCI 1120 October 10, 2018

Slide 11

More vim Tips

• To edit multiple files at once, vim followed by their names. :next takes you

to the next file, :rew back to the first one. :q exits only from the current file;

:qall to exit from all.

Or use “split the screen” (:split) to show two files (or two parts of the

same file) at once; control-W twice switches between them. :split

followed by filename splits the screen and puts the other file in the new

“window”.

• You (probably? maybe?) know about diff to compare contents of two files.

What you might not know about is vimdiff, which shows files side by side

(or one above the other with -o) using colors to highlight differences.

• If you don’t like the colors, there are options: Type :colorscheme and a

space and press “tab” repeatedly to cycle through choices, enter to try one. If

you find one you like, put command in .vimrc file.

Slide 12

Minute Essay

• Questions? otherwise just “sign in”.


