
CSCI 1120 November 7, 2018

Slide 1

Administrivia

• Reminder: Homework 8 due next week.

Slide 2

Minute Essay From Last Lecture

• Most people had not seen Conway’s game before, though one had

implemented it using OpenGL and one had heard it mentioned in a math

course. (That it would be of interest in math I guess makes sense given that it

was first published in a column called “Mathematical Games”?)

• One person thought it was interesting how simple rules could give such

interesting results. Agreed!

CSCI 1120 November 7, 2018

Slide 3

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

• The answer is “yes, sort of”: C doesn’t provide nearly as much syntactic help

with object-oriented programming, but you can get something of the same

effect. But first, some simpler user-defined types . . .

Slide 4

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

charptr c1, c2;

• Can help with readability: E.g., without typedef we’d write

char * c1, * c2;

and it’s all too easy to forget that second *.

CSCI 1120 November 7, 2018

Slide 5

C typedefs, Continued

• typedef also useful to isolate things that might be different on different

platforms (e.g., whether to use float or double in some application) in a

single place, or where you want to easily be able to change a type used

frequently.

• Example:

typedef myfloat double; /* change only this to use float */

myfloat f1;

myfloat f2;

Slide 6

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type provides a way to represent a variable that can be one of a

list of values (e.g., a “color” that can be red, green, blue, or yellow).

• Two syntaxes (next slide) . . .

CSCI 1120 November 7, 2018

Slide 7

C enums, Continued

• One way is simple but a bit cumbersome:

enum basic_color_t { red, green, blue, yellow };

enum basic_color_t c = red; /* have to repeat "enum" */

• Another way uses typedef:

typedef enum { red, green, blue, yellow } basic_color_t;

basic_color_t c = red;

Slide 8

C enums, Continued

• Enumerated data types can make code more readable, and in C sometimes

combine nicely with switch (to specify what happens for each value), e.g.,

enum basic_color_t c = /* something */

switch (c) {

case red: /* something */

break;

case green: /* something */

break;

/* */

}

• But under the hood, C enumerated types are really just integers, and they can

be ugly to work with in some ways (e.g., no nice way to do I/O with them).

CSCI 1120 November 7, 2018

Slide 9

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types — something like a class

in an object-oriented language, but with no methods and no way to hide

fields/variables.

• Two versions of syntax (next slide) . . .

Slide 10

C structs, Continued

• One way is simple but a bit cumbersome:

struct account_t {

char acct_ID[9]; /* 8 characters plus ’\0’ */

unsigned long balance;

};

struct account_t a;

• Another way uses typedef:

typedef struct {

char acct_ID[9]; /* 8 characters plus ’\0’ */

unsigned long balance;

} account_t;

account_t a1;

• Initialize field by field (next slide) or like this:

account_t a1 = { "12341234", 1000 };

CSCI 1120 November 7, 2018

Slide 11

C structs, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct account_t acct;

acct.balance = 0;

-> if what you have is a pointer to a struct:

struct account_t a;

struct account_t * acct_p = &a;

acct_p->balance = 1;

(could also use (*acct p).balance but uglier?)

Slide 12

structs, Continued

• (Look at example code briefly.)

CSCI 1120 November 7, 2018

Slide 13

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• For example, the following declares a data type that can hold either a float

or an int:

union thing {

float f;

int i;

};

union thing t1;

t1 can hold either a float (t1.f) or an int (t1.i) but not both.

• More in textbook about this; it can be useful, but can also make code more

difficult to understand.

Slide 14

User-Defined Types and Library Code

• Library code often makes use of “opaque” types (e.g., FILE).

• Implementing this often involves separating functionality into interface (.h file

containing type definitions, function declarations) and implementation (.c file

containing function definitions.

• This leads into . . .

CSCI 1120 November 7, 2018

Slide 15

Separate Compilation and make — Review

• C (like many languages) lets you split large programs into multiple

source-code files. Typical to put function declarations (headers), constants,

etc., in file ending .h, function definitions (code) in file ending .c.

Compilation process can be separated into two steps: “compile” (convert

source to object code) and “link” (combine object and library code to make

executable).

• make can help manage compilation process. (Can also be useful as a

convenient way to always compile with preferred options.)

Slide 16

Example — Sorted Linked List

• As an example, consider writing code for a sorted linked list.

• (You’ve probably seen something like this in another language, and the ideas

are the same; it’s just the details that are a little messier.)

• My example follows the scheme laid out in the previous slide:

– a .h file that defines a type for the (nodes of) the list (we’ll represent a list

as a pointer to its first node) and declares some functions to perform

operations on the list, and

– a .c file with the code for the functions, and

– additional files for a test program.

• (Code next time.)

CSCI 1120 November 7, 2018

Slide 17

Minute Essay

• Questions? otherwise just sign in.

