
CSCI 1120 (Low-Level Computing), Spring 2018

Homework 9

Credit: 20 points.

1 Reading

Be sure you have read, or at least skimmed, the assigned readings for classes through 4/11.

2 Honor Code Statement

Please include with each part of the assignment the Honor Code pledge or just the word “pledged”,
plus one or more of the following about collaboration and help (as many as apply).1 Text in italics
is explanatory or something for you to fill in. For written assignments, it should go right after your
name and the assignment number; for programming assignments, it should go in comments at the
start of your program(s).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per problem.
Submit your program source (and any other needed files) by sending mail to bmassing@cs.trinity.edu
with each file as an attachment. Please use a subject line that mentions the course and the assign-
ment (e.g., “csci 1120 hw 9” or “LL hw 9”). You can develop your programs on any system that
provides the needed functionality, but I will test them on one of the department’s Linux machines,
so you should probably make sure they work in that environment before turning them in.

1 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is

the ACM’s Special Interest Group on CS Education.

1

bmassing@cs.trinity.edu

CSCI 1120 Homework 9 Spring 2018

1. (20 points) Your mission for this assignment is to complete a partial implementation in C of
a binary search tree (a.k.a. sorted binary tree) of ints. (I’m hoping that all of you know about
this data structure from CS2 or another course. If not, the http://en.wikipedia.org/wiki/Binary search tree
is a reasonable description (but I recommend that you not read the example code until you
try to write your own).

This partial implementation consists of a number of files:

• Function declarations for tree: http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09

• Starter file for function definitions: http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09

• Test program and supporting files: http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09/Problems/test-help
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09/Problems/test-help

• Makefile for compiling (comments in the file tell you how to use it): http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09

I’ve made http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09/Problems/h
containing all of these files, so it will probably be simplest just to download that and unzip
it (command unzip on our machines). If you prefer to download individual files, NOTE that
you should use your browser’s “download” or “save” function to obtain the Makefile rather
than copying and pasting text. This is because copy-and-paste will likely replace the tab char-
acters in the file with spaces, with bad consequences (since tabs are semantically significant
in makefiles.)

Your job is to modify the file int-bst.c so it includes function definitions for all the func-
tions declared in int-bst.h. The test program is self-contained and contains code to call the
functions you will write, so you don’t need to write any input/output code, aside from imple-
menting two print functions. You compile the test program by typing make test-int-bst

and run it by typing test-int-bst.

Notice that the function that removes a single element of the tree (int bst remove) is optional
— you can provide an “implementation” that just prints an error message, or for extra credit
you can actually implement this operation.

You should not modify any other files, unless you want to add additional tests to test-int-bst.c.

Sample output of the test program:

inserting 40 into tree []

result [40]

inserting 30 into tree [40]

result [30 40]

inserting 50 into tree [30 40]

result [30 40 50]

inserting 20 into tree [30 40 50]

result [20 30 40 50]

inserting 60 into tree [20 30 40 50]

result [20 30 40 50 60]

inserting 16 into tree [20 30 40 50 60]

result [16 20 30 40 50 60]

inserting 14 into tree [16 20 30 40 50 60]

result [14 16 20 30 40 50 60]

2

http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09
int-bst.h
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09
int-bst.c
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09
test-int-bst.c
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09
test-helper.c
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09
test-helper.h
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2018spring/Homeworks/HW09

CSCI 1120 Homework 9 Spring 2018

inserting 18 into tree [14 16 20 30 40 50 60]

result [14 16 18 20 30 40 50 60]

inserting 24 into tree [14 16 18 20 30 40 50 60]

result [14 16 18 20 24 30 40 50 60]

inserting 56 into tree [14 16 18 20 24 30 40 50 60]

result [14 16 18 20 24 30 40 50 56 60]

inserting 64 into tree [14 16 18 20 24 30 40 50 56 60]

result [14 16 18 20 24 30 40 50 56 60 64]

inserting 30 into tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 16 18 20 24 30 40 50 56 60 64]

inserting 50 into tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 16 18 20 24 30 40 50 56 60 64]

test data in order [14 16 18 20 24 30 30 40 50 50 56 60 64]

40

30

20

16

14

.

.

18

.

.

24

.

.

.

50

.

60

56

.

.

64

.

.

finding 0 in tree [14 16 18 20 24 30 40 50 56 60 64]

result false

finding 100 in tree [14 16 18 20 24 30 40 50 56 60 64]

result false

finding 10 in tree [14 16 18 20 24 30 40 50 56 60 64]

result false

finding 40 in tree [14 16 18 20 24 30 40 50 56 60 64]

result true

finding 14 in tree [14 16 18 20 24 30 40 50 56 60 64]

result true

finding 64 in tree [14 16 18 20 24 30 40 50 56 60 64]

result true

3

CSCI 1120 Homework 9 Spring 2018

removing 0 from tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 16 18 20 24 30 40 50 56 60 64]

removing 16 from tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 18 20 24 30 40 50 56 60 64]

removing 60 from tree [14 18 20 24 30 40 50 56 60 64]

result [14 18 20 24 30 40 50 56 64]

removing 30 from tree [14 18 20 24 30 40 50 56 64]

result [14 18 20 24 40 50 56 64]

removing 50 from tree [14 18 20 24 40 50 56 64]

result [14 18 20 24 40 56 64]

40

20

14

.

18

.

.

24

.

.

64

56

.

.

.

inserting 0 into tree [14 18 20 24 40 56 64]

result [0 14 18 20 24 40 56 64]

inserting 100 into tree [0 14 18 20 24 40 56 64]

result [0 14 18 20 24 40 56 64 100]

inserting 0 into tree [0 14 18 20 24 40 56 64 100]

result [0 14 18 20 24 40 56 64 100]

inserting 100 into tree [0 14 18 20 24 40 56 64 100]

result [0 14 18 20 24 40 56 64 100]

after removing all elements []

Hints:

• There are several functions you need to write — the ones declared in int-bst.h. You
might start by just writing stub versions that return something (anything) if they need
to and otherwise do nothing; then you can compile and try the test program. It won’t
do anything very meaningful, but at least you can check that you know how to compile
and run it. Then start filling in the functions one at a time, checking that each works
or at least compiles before going on to the next.

• You may want to add additional “helper” functions, but if so they should go only in
int-bst.c.

• You may find it helpful to look more closely at the sorted-list example shown in class
and available on the course “sample programs” page — it’s meant to be a model for one
way to implement a linked data structure in C, and the functions you need to write code

4

CSCI 1120 Homework 9 Spring 2018

for are meant to be tree versions of functions in sorted-int-list.c. It’s up to you
whether to use recursion or iteration or both, but I advise that recursion will probably
be much easier for the two functions that print the tree and is effective for the others as
well.

• I recommend that at some point you run the completed test program with valgrind to
check that you don’t have memory leaks.

What to turn in: Just send me your int-bst.c file, unless you added more tests to test-int-bst.c,
in which case send that too (but be sure your code works with the provided version as well).

5

