
CSCI 1120 January 24, 2018

Slide 1

Administrivia

• Homework 1 grades sent by e-mail. This is how you will get grades and

feedback for programming assignments.

• Reminder: Homework 2 due today.

• Homework 3 on the Web; due next week. Also not especially algorithmically

challenging. Be advised that you should be able to complete this assignment

with only the C constructs mentioned in class or reading, and that’s what I

intend.

• If you wonder about the fact that the e-mail address TMail shows for me isn’t

the same as the one I give in my course materials — it’s a long story, but you

can use either one.

Slide 2

More Administrivia

• For minute essays, you can use them as a way to ask me pretty much

anything — questions about the course, random-curiosity questions about

something related to CS — and I’ll do my best to answer.

• I ask you when turning in homeworks to put the assignment number and the

course in the subject line, and people are mostly doing that — thanks.

If you have a question about the homework, however, especially an urgent

one, put “question” or “urgent” in the subject line too, so I know to look at it

right away.

CSCI 1120 January 24, 2018

Slide 3

Minute Essay From Last Lecture

• No clear consensus with regard to buying the textbook — several are doing

so, many not. “FYI”?

Slide 4

A Few More Words About vim

• Most people seem to have learned something from the tutorial. Good! vim is

painful to use if you know only the bare minimum but starts to seem

reasonable when you know more.

• I have an introduction to vim linked from the class “Useful links” page. The

first part you may know, but at the end there’s a section about behaviors that

may have puzzled you.

• Two keys to know about if you don’t already: u to “undo” previous command,

and % to find matching parenthesis/brace. Also you might like “visual mode”;

:help visual-mode to learn more.

CSCI 1120 January 24, 2018

Slide 5

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989 (“C89”). Widely adopted, but has some

annoying limitations. Still-later standard (2011) exists but is not (yet?) widely

implemented.

• Later standard — 1999 (“C99”). Many features are widely implemented, but

few compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

In this class I will feel free to use features of the C99 standard but will point

out where they differ from the older one. Some of the newer features will work

with gcc only with -std=c99 option.

Slide 6

Sidebar — Compiler Options

• Earlier I showed the simplest way to use gcc to compile a program. But

there are many variations — options. Specify on the command line, ahead of

name of input file.

• Some of the most useful:

– -Wall and -pedantic warn you about dangerous and non-standard

things. -Wall highly recommended. I recommend -pedantic as

well but not quite as emphatically.

– -std=c99 allows you to use features new with C99.

– -o allows you to name the output file (default a.out).

• Automate with make (more later).

CSCI 1120 January 24, 2018

Slide 7

Expressions in C (Review)

• C (like many other programming languages) has a notion of an expression.

• Every expression has a value, and computing this value is called evaluating

the expression.

• Sometimes evaluating an expression also produces side effects. E.g., a call

to printf is an expression; evaluating it produces a result (yes, really!) and

a side effect.

Assignment is also an expression(!), so you can write

a = b = 0;

• Many, many operators of different kinds. Last time we talked about arithmetic

operators, including pre/post increment/decrement.

Slide 8

Expressions — “Caveat Programmer”

• Expressions can be quite complex. How they’re evaluated depends on rules

of precedence and associativity. My advice — when in doubt, use

parentheses! Example: (x + y) / 2 versus x + y / 2.

• C standard is somewhat imprecise about details of expression evaluation —

e.g., in evaluating

f() + g()

two functions could be called in either order. (Why? To allow greater flexibility

for implementers, possible allow for more-efficient programs.)

• C syntax allows programmers to write statements/expressions in which a

variable’s value is changed more than once, e.g.,

i = (i++) + (i--);

Syntactically legal, but standard says that such expressions invoke “undefined

behavior”. Best to avoid that!

CSCI 1120 January 24, 2018

Slide 9

Conditional Execution

• As in other procedural languages, C has syntax for saying that some code

should be executed only if some condition holds.

• Syntax is

if (boolean-expression)

statement1

else

statement2

where statement1 and statement2 can be single statements or blocks

enclosed in curly braces.

• You can build up chains of conditions by making the statement after else

another if, and you can omit the else and following statement. (The ideas

here should be very familiar, and for most of you even the syntax should be

pretty much what you know.)

Slide 10

Boolean Expressions and Values in C

• Early standards for C didn’t include a Boolean type, but represented it with

integers, with the convention that 0 is false and anything else true.

• Later standards include a bool type, but if you use it for variables you must

be sure the compiler knows you want to compile with the right standard, and

you must include

#include <stdbool.h>

• Partly as a consequence of this, you can use an integer-valued expression

where a Boolean expression is needed.

(So you can write if (a = b), but it won’t do what you probably want!)

• Of course(?), C also includes the usual range of relational and Boolean

operators.

CSCI 1120 January 24, 2018

Slide 11

Conditional Expressions

• Scala and Python both provide a way to include if/else idea within an

expression.

• C does too, but it’s not as obvious — “ternary operator”, e.g.,

int sign = (x >= 0) ? 1 : -1;

Slide 12

Conditional Execution — One More Thing

• One other conditional-execution construct you may encounter — switch.

Basically a short form of if/elseif/else. Somewhat like match in Scala but

nowhere near as powerful. Example:

char c; /* code to set value omitted */

switch (c) {

case ’a’: printf("first case\n"); break;

case ’b’: printf("second case\n"); break;

default: printf("default\n");

}

CSCI 1120 January 24, 2018

Slide 13

Simple Input, Revisited

• As mentioned last time, there is a way to find out whether scanf was able

to actually read something of the requested type(s).

• scanf returns a value, namely the number of variables successfully read.

Can (should!) check that this matches what you asked for. C-idiomatic way to

check for success is

if (scanf("%d %d", &var1, &var2) == 2)

• Even with this, scanf is not entirely satisfactory as a way of getting even

numeric input, let alone text, but it’s commonly used and will do for now.

Slide 14

Functions in C

• Functions in C are conceptually much like functions in other procedural

programming languages. (Methods in object-oriented languages are similar

but have some extra capabilities.)

I.e., a function has a name, parameters, a return type, and a body (some

code).

• One difference between C and higher-level languages: You aren’t supposed

to use a function before you tell the compiler about it, either by giving its full

definition or by giving a declaration that specifies its name, parameters, and

return type. Function body can be later in the same file or in some other file.

• Also, C functions are not supposed to be nested (some compilers allow it, but

it’s not standard so I say best not to use it).

CSCI 1120 January 24, 2018

Slide 15

Parameter Passing in C

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — more later when we talk about them.

Slide 16

Functions, Local Variables, and Recursion

• Functions in C can contain local variables. As in (many?) other languags,

every time you call the function, you get a fresh copy of the variables.

• So yes, recursive functions work the way you (probably?) think they should.

CSCI 1120 January 24, 2018

Slide 17

Library Functions in C

• C does include a library of standard functions, though it’s nowhere near as

extensive as that of some languages.

• At least on UNIX-like systems, for each library function there should be a

man page that tells you about it, including information about #include

files you need and link-time options (e.g., -lm for sqrt). For now, be

advised that asterisks in types denote pointers, which we will talk about soon.

(If when you type man function you get something other than a description of

function — as you do for printf, for example — try man 3 function).

Explanation on request.)

Slide 18

Conditional Execution and Functions in C — Example(s)

• (Examples as time permits.)

CSCI 1120 January 24, 2018

Slide 19

Minute Essay

• How comfortable and familiar are you with recursion? (My guess is that those

of you who took CS1 should be okay with it, but the few who didn’t, maybe

not?)

• What (if anything!) was interesting or difficult or otherwise noteworthy about

Homework 2?

