
CSCI 1120 February 7, 2018

Slide 1

Administrivia

• Reminder: Homework 4 due next week.

• Sample solution for Homework 3 posted. (So if you weren’t happy with your

answer — “couldn’t this be simpler?” — compare with mine?)

Slide 2

Minute Essay From Last Lecture

• About seconds per hour, etc., in Homework 2, no clear majority: Some used a

calculator (or the equivalent — one mention of Python!), other a search

engine.

• About Homework 3, several mentions of difficulty checking for non-integer

input. Before searching the Web, consider reviewing examples on “sample

programs” on course Web site — I mean for them to be useful in doing the

assignments.

• Also several comments about the first problem — yes, it’s just a specialized

sort, and can be done that way (see one of my sample solutions), or with

conditionals.

CSCI 1120 February 7, 2018

Slide 3

Minute Essay From Last Lecture, Continued

• Other interesting comments:

“15 minutes on the logic, 2 hours debugging” (syntax). Sounds about right for

a new-to-you language?

“Hurt my soul” not to be able to just use bubble sort on the first problem. :-)

Slide 4

gcc Tip

• I say always always compile with -Wall — six extra keystrokes, and not

even that if you remember about the up arrow in bash (shell).

• And then do something about warnings — almost all indicate a potential

problem! (If you can’t figure out what, ask! if nothing else asking me by e-mail

works though isn’t as immediate.)

• (The first thing I usually do when students ask why their code doesn’t work is

to ask them to recompile with this option. It’s surprising — or not! — how

often it warns about something that turns out to be the source of the problem!)

• If you want to be really thorough, add -pedantic (flags nonstandard

usage — such as nested functions).

CSCI 1120 February 7, 2018

Slide 5

A Very Little About “Random” Numbers

• Homework 4 asks you to work with the library functions srand() and

rand(). A few words about what they do . . .

• First, what we mean by “random” is (I think!) an interesting question with no

obvious answer.

• What’s often wanted is something that can’t be predicted, and it’s not clear we

can get that with a system that’s deterministic. Further, even if we could, we

might not want that, since we often want to be able to repeat a test.

• (Canonical reference — discussion in volume 2 of Knuth’s The Art of

Computer Programming. Very mathematical. Other references may be

easier.)

• (Aside: In the process of getting TAOCP published, Knuth got curious about

typesetting via computer and started a side project that eventually produced

TEX. Classic example of a side project that turned into much more!)

Slide 6

A Very Little About “Random” Numbers, Continued

• So, often what we really want is a “pseudo-random number generator” —

something that generates a sequence of numbers that looks random but is

repeatable given some reproducible starting point.

• Early researchers apparently thought more-complex algorithms would give

better results, but — not necessarily. Very simple algorithms can give quite

good results!

CSCI 1120 February 7, 2018

Slide 7

A Very Little About “Random” Numbers, Continued

• Lots of uses for “random” sequences (e.g., so-called “Monte Carlo” methods

for simulating things), so many libraries include function(s) to produce them.

• Typical library provides some way to set the starting point (the “seed”) and

then a function that when called repeatedly produces the sequence —

srand() and rand() in standard C. Mostly these produce a large range

of possible values. (Why is this good?)

• Some libraries also provide functions to map the full range to a smaller one

(e.g., to simulate rolling a die). C doesn’t, but there are some semi-obvious

approaches. The problem on Homework 4 asks you to do a simple

comparison of two of them.

Slide 8

Arrays — Review/Recap

• As in other languages, arrays give you a way to create the an indexed

collection with all elements of the same type.

• Unlike most modern(?) languages, arrays in C are a thin veneer over the

implementation and lack safety checks and object-oriented features such as

built-in length.

CSCI 1120 February 7, 2018

Slide 9

Pointers in C — Overview

• C, in contrast to Scala and Java and Python, makes an explicit distinction

between things and pointers-to-things.

• In Python and Scala variables are pointers/references to objects, and you

deal with them fairly abstractly. In Java, variables are either references to

objects, or primitives, but one or the other.

• In C (and C++), you can have variables that are “things” (integers,

floating-point numbers, etc.) and variables that are “pointers to things” (in

some ways more like variables in Python and Scala, but very low-level and

with fewer safety checks).

Slide 10

Pointers in C — Overview Continued

• That is, in C, pointers can be thought of as memory addresses (indices into

large one-dimensional memory space — not always strictly true but a good

first approximation), though declared to point to variables (or data) of a

particular type.

• Example types:

int * pointer to int;

double * pointer to double;

CSCI 1120 February 7, 2018

Slide 11

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

(What do you think happens if x ptr hasn’t been initialized?)

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in languages more concerned with safety. Potentially risky but

sometimes useful.

Slide 12

Parameter Passing in C — Review

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as you would want to

do in, say, a sort function). Why “apparent exception”? because really what’s

being passed to the function is not the array but a pointer! so the copying

produces a second pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

CSCI 1120 February 7, 2018

Slide 13

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• (The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.)

• (Example?)

Slide 14

Pointers Versus Arrays

• In almost all contexts arrays and pointers are interchangeable.

• In particular, if you declare the type of a function parameter to be a pointer,

you can pass it an array, and vice versa.

CSCI 1120 February 7, 2018

Slide 15

Strings in C — Overview

• C has a data type char, used for much the same purposes as characters in

other language, but with a smaller minimum range (enough to represent 7-bit

ASCII but not Unicode).

• C “strings” are null-terminated arrays of characters and can be worked with as

arrays or using pointers. There are standard library functions for doing (some)

things with characters and strings.

• (Examples next time.)

Slide 16

Minute Essay

• Do you remember to compile with -Wall? and if so, do you try to fix

anything being warned about? I ask because I got a fair amount of code for

Homework 3 that gave warnings . . .

• Any questions — about pointers, strings, anything else?

