CSCI 1120 February 14, 2018

Administrivia

e Reminder: Homework 4 due today.

e Homework 5 on the Web. Due next week.
One problem asks you to fill in the body of a function to sort an array, which
should be straightforward if you remember learning about sorting in CS1 (and
Slide 1 if you don’t, ask me about supplemental reading).
The other problem involves strings and may be — if not algorithmically

challenging, at least somewhat interesting?

Minor C Programming Tip

e In some of the sample programs, main () returns EXIT_SUCCESS or
EXIT_FAILURE. These are constants defined in stdlib.h and
somewhat more guaranteed to be more portable than 0 or 1 (not to mention

that they make it clearer what’s being done?).

Slide 2

CSCI 1120 February 14, 2018

Pointers, Characters, and Strings in C — Review

Pointers are, roughly speaking, memory addresses. Useful in many contexts.
If they don’t make sense to you yet, practice using them may help?

Characters in C are small integers, big enough to represent ASCII characters

but possibly not much more.

Slide 3

Strings in C are arrays of characters, ending with “null character” (\ 0). Can

operate on them as arrays or using pointers.

e (Example — several ways to write a “string length” function.)

Characters and Strings in C — Library Functions

e C’s standard library is pretty limited but does contain some useful functions
for operating on character/string data.

® Some useful ones are 1sdigit etc. for characters and strlen,
strcmp, strchr, and strstr for strings.

Slide 4 (Notice that you need st rcmp to compare strings for equality; == compares
pointers so generally will not do what you want.)

CSCI 1120 February 14, 2018

Strings in C — Pitfalls

e Most functions assume that strings are properly terminated. (What do you
think happens if they’re not?)

e Many functions that store into a string have no way to check that it's big
enough.

Slide 5 So getting text input from standard input safely is surprisingly difficult!

scanf can be made to check, but not (in my opinion) nicely, and it stops on

whitespace anyway. get s gets a full line, but notice what gcc says when

you use it. £get s is maybe better but has its limitations too.

Another Way to Get Input — Command-Line Arguments

e Now that we know about arrays, pointers, and text strings, we can talk about
command-line arguments. What are they? text that comes after the name of
the program on the command line (e.g., when you write gcc —-Wall
myprogram. c, there are are two command-line arguments), possibly

modified by the shell (e.g., for filename wildcards).
Slide 6

o Most programming languages provide a way to access this text, often via
some sort of argument to the main function/method.

CSCI 1120 February 14, 2018

Command-Line Arguments in C

e In C, command-line arguments are passed to main as an array of text
strings. So if you define main as
int main(int argc, char * argv[]) { }
argc is the number of arguments, plus one, and argv is an array of strings
Slide 7 containing the arguments.

(“Plus one”? yes, argv [0] is something system-dependent, often the path

for the program’s executable.)

(Example — simple program to echo command-line arguments.)

e What if you want to get numeric input? you must convert string pointed to by

argv[i] to the type you want (more shortly).

(Command-Line Arguments and UNIX Shells

e Be aware that most UNIX shells do some preliminary parsing and conversion
of what you type — e.g., splitting it up into “words”, expanding wildcards, etc.,

etc.

e |f you don’t want that — enclose in quotation marks or use escape character

Slide 8 (backslash).

CSCI 1120 February 14, 2018

Converting Strings to Numbers

e As noted, command-line arguments are strings. Two sets of functions for

converting.
e One (atoi etc.) is easy to use but does no error checking (so | say avoid).

e Other (strtol etc.) is more trouble but does let you check for errors.

Slide 9
(Improve echo program.)

e Anything noteworthy about Homework 4 (interesting, difficult, etc.)?

Slide 10

