
CSCI 1120 February 21, 2018

Slide 1

Administrivia

• Reminder: Homework 5 due today.

• Homework 6 on the Web; due in two weeks.

Slide 2

Minute Essay From Last Lecture

• About Homework 4, many people found it more difficult than previous

assignments, but several said it was also more interesting. I agree!

• A few people mentioned learning that arrays in C aren’t initialized by default.

(As with so many things, probably meant as an efficiency improvement.)

• Several mentioned trouble converting math to code in the first problem. And

in working with individual students in lab it seems that several read the

subscripted variable rn−1 as (rn)− 1. That was a new-to-me problem and

— “hm!”?

• Several people mentioned having trouble understanding the second problem.

Students have had this problem in the past, and I may owe you an apology for

not trying to revise and clarify.



CSCI 1120 February 21, 2018

Slide 3

Character-Oriented I/O in C

• Two useful functions to know about: getchar and putchar.

• Both treat characters as integers (which is allowed). getchar returns a

special value, EOF, at “end of file”. How to signal this when standard input is

from keyboard is system-dependent — often(?) control-D on UNIX-like

systems.

• (Sample program echo-text.c illustrates using these — not shown in

class.)

Slide 4

I/O in C — Recap

• getchar and putchar provide simple character-at-a-time I/O to

standard input/output.

• printf and scanf provide more sophisticated functionality, but again for

standard input/output.

• Reading text strings safely is surprisingly difficult, so I say when you can read

text a character at a time it may make sense to do so (as in one of the

problems on Homework 6).

• I/O redirection provides one way to work with files. Is there something more

general? Yes. (“Of course”?)



CSCI 1120 February 21, 2018

Slide 5

File I/O — Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Slide 6

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

(FILE is an example of an “opaque data type” — something defined in a

library, the details of which might vary among implementations and which

should not matter to users.)

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .



CSCI 1120 February 21, 2018

Slide 7

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

Slide 8

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc provide single-character input and output.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)



CSCI 1120 February 21, 2018

Slide 9

Reading Text Strings

• As noted previously, getting text-string input is surprisingly tricky. scanf (or

fscanf) seems like an obvious choice, but it has limitations. Getting a

whole line is probably better, and for that fgets() is the better choice.

• Because of this, I much prefer to pass such things as filenames as

command-line arguments.

Slide 10

Simple Examples

• First do a simple example of character-oriented I/O, using getchar and

putchar for a first version and then fgetc and fputc.

• Then try an example (a revised program to sum inputs) of using fscanf

and fprintf to read/write integers. Notice that fscanf “fails” in two

situations: end of file and bad input. One way to tell which has happened is

with feof(), which returns “true” at EOF. Notice that this function only

returns “true” after you’ve tried to read something but EOF was detected.

(Some published examples get this wrong!)



CSCI 1120 February 21, 2018

Slide 11

Minute Essay

• Anything noteworthy about Homework 5 (interesting, difficult, etc.)?

• How has the pace/workload of this class been so far? do you feel like it’s

about right for a one-unit course (which is supposed to represent about three

hours of work per week, in and out of class)?


