
CSCI 1120 February 28, 2018

Slide 1

Administrivia

• Reminder: Homework 6 due next week.

• Reminder: Homework 7 on the Web; due after spring break. (But I strongly

encourage you to start before the break — this one is not easy, and not meant

to be, but doable and I think pretty instructive.)

Slide 2

Minute Essay From Last Lecture

• Several people found the palindrome problem interesting and/or tricky. I feel

like this is a nice example of how the way you’d solve a problem in one

language isn’t always the best way to solve it in another.

• Most people were okay with the pace/workload, though a few found it a bit

fast/heavy. Probably not atypical?

• One person mentioned that the result of isalpha and other similar

functions isn’t 1 for “true”, but something else. Indeed. The man page does

say only that the result is nonzero, not that it’s a particular value (though it is

zero for “false”).



CSCI 1120 February 28, 2018

Slide 3

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays, added in C99 standard, help with that, but don’t solve

all related problems:

In many implementations, space is obtained for them “on the stack”, an area

of memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).

Slide 4

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(Most implementations allocate this memory “on the heap”, which is (usually?)

limited only by how much total memory the program is allowed to use.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can skip this, but not good practice, since in

“real” programs you may eventually run out of memory.)

• Python and Scala hide most of this from you — allocating space for objects is

automatic/hidden, and space is reclaimed by automatic garbage collection.

Makes for easier programming but possibly-unpredictable performance.



CSCI 1120 February 28, 2018

Slide 5

Dynamic Memory and C, Continued

• Simple examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *

20);

free(nums);

though it’s better style/practice to write

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(*some text)

* 20);

free(nums);

• Some books/resources recommend “casting” value returned by malloc.

Other references recommend the opposite! But you should check the value —

if NULL, system was not able to get that much memory.

Slide 6

• (Example — “improved” sort program.)



CSCI 1120 February 28, 2018

Slide 7

Function Pointers

• You know from more-abstract languages that there are situations in which it’s

useful to have method parameters that are essentially code. Some languages

make that easy (functions are “first-class objects”) and others don’t, but

almost all of them provide some way to do it, since it’s so useful — e.g.,

providing a “less-than” function for a generic sort.

• In C, you do this by explicitly passing a pointer to the function.

Slide 8

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const void *, const void *);

and using my compare as the last parameter to qsort.

• (Example — “improved” sort program.)



CSCI 1120 February 28, 2018

Slide 9

More vim Tips

• To edit multiple files at once, vim followed by their names. :next takes you

to the next file, :rew back to the first one. :q exits only from the current file;

:qall to exit from all.

Or use “split the screen” (:split) to show two files (or two parts of the

same file) at once; control-W twice switches between them. :split

followed by filename splits the screen and puts the other file in the new

“window”.

• You (probably? maybe?) know about diff to compare contents of two files.

What you might not know about is vimdiff, which shows files side by side

(or one above the other with -o) using colors to highlight differences.

• If you don’t like the colors, there are options: Type :colorscheme and a

space and press “tab” repeatedly to cycle through choices, enter to try one. If

you find one you like, put command in .vimrc file.

Slide 10

Minute Essay

• Questions? otherwise just “sign in”.


