
CSCI 1120 March 5, 2018

Slide 1

Administrivia

• Reminder: Homework 6 due today.

• Reminder: Homework 7 due in two weeks (first class day after sprinng break).

• (Yes, I am making progress on grading earlier homeworks. It’s just taking a

while, alas.)

Slide 2

Function Pointers — Recap, Example

• Last time we talked about how to pass a function to another function in C,

using “function pointers” as parameters.

• We looked at how to use a function that has such a parameter (library

function qsort). Also seems useful to look at example of defining such a

function (view code briefly).



CSCI 1120 March 5, 2018

Slide 3

A Little About the C Preprocessor

• C logically divides the process of producing an executable into distinct

phases. First phase is “preprocessing”.

• Preprocessing makes use of “preprocessor directives”, which start with a #.

• Examples you’ve seen — #include to include information about library

functions, #define to define constants.

• gcc -E infile.c to see output of preprocessor.

Slide 4

A Little More About the C Preprocessor

• Other functionality includes macros and “conditional compilation”:

• Macros can be used to do a primitive kind of generic programming (more on

next slide).

• Conditional compilation often used to tailor library or other code to specific

environments. Also allows writing .h files that can be included more than

once without harm. Lots of examples in files in /usr/include.

• More in chapter 14, some beyond the scope of this course. Focus is on

relatively simple text manipulation.



CSCI 1120 March 5, 2018

Slide 5

Macros in C

• Simple example (and a very typical use):

#define MAX(a, b) ((a) > (b) ? (a) : (b))

int x = MAX(10,20);

Another use might be a SQUARE macro.

• More-complex macros can be used to generate multiple lines of code, though

this can get (in my opinion) messy and not very readable.

• If you find yourself writing the same ones repeatedly, can put them in a file

(typically with extension .h) and use #include (with filename in double

quotes) to include them.

Slide 6

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.



CSCI 1120 March 5, 2018

Slide 7

Makefiles

• First step in using make is to set up “makefile” with “rules” describing how

files that make up your program (source, object, executable, etc.) depend on

each other and how to update the ones that are generated from others.

Normally call this file Makefile or makefile.

Simple example on sample programs page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 8

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.



CSCI 1120 March 5, 2018

Slide 9

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.

Slide 10

“Phony” Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.



CSCI 1120 March 5, 2018

Slide 11

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• Example:

objs = main.o foo.o

CFLAGS = -Wall -pedantic -std=c99

main: $(objs)

gcc $(CFLAGS) -o main $(objs)

Slide 12

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• Or you could use

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

OPT = -O

and then optionally override the -O by saying, e.g., make OPT=-g foo.



CSCI 1120 March 5, 2018

Slide 13

Minute Essay

• Anything noteworthy about Homework 6?

• Have you seen make in another course or elsewhere?

• Best wishes for a good spring break!


