
CSCI 1120 April 11, 2018

Slide 1

Administrivia

• (By e-mail.)

Slide 2

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

• The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic

help with object-oriented programming, but you can get something of the

same effect. But first, some simpler user-defined types . . .

CSCI 1120 April 11, 2018

Slide 3

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

charptr c1, c2;

• Can help with readability (e.g., without typedef we’d write

char * c1, * c2;

and it’s all too easy to forget that second *.

Slide 4

C typedefs, Continued

• typedef also useful to isolate things that might be different on different

platforms (e.g., whether to use float or double in some application) in a

single place, or where you want to easily be able to change a type used

frequently.

• Example:

typedef myfloat double; /* change only this to use float */

myfloat f1;

myfloat f2;

CSCI 1120 April 11, 2018

Slide 5

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type provides a way to represent a variable that can be one of a

list of values (e.g., a “color” that can be red, green, blue, or yellow).

• Two syntaxes (next slide) . . .

Slide 6

C enums, Continued

• One way is simple but a bit cumbersome:

enum basic_color_t { red, green, blue, yellow };

enum basic_color_t c = red; /* have to repeat "enum" */

• Another way uses typedef:

typedef enum { red, green, blue, yellow } basic_color_t;

basic_color_t c = red;

CSCI 1120 April 11, 2018

Slide 7

C enums, Continued

• Enumerated data types can make code more readable, and in C sometimes

combine nicely with switch (to specify what happens for each value), e.g.,

enum basic_color_t c = /* something */

switch (c) {

case red: /* something */

break;

case green: /* something */

break;

/* */

}

• Under the hood, though, C enumerated types are really just integers, though,

and they can be ugly to work with in some ways (e.g., no nice way to do I/O

with them).

Slide 8

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types — something like a class

in an object-oriented language, but with no methods and no way to hide

fields/variables.

• Two versions of syntax (next slide) . . .

CSCI 1120 April 11, 2018

Slide 9

C structs, Continued

• One way is simple but a bit cumbersome:

struct account_t {

char acct_ID[9]; /* 8 characters plus ’\0’ */

unsigned long balance;

};

struct account_t a;

• Another way uses typedef:

typedef struct {

char acct_ID[9]; /* 8 characters plus ’\0’ */

unsigned long balance;

} account_t;

account_t a1;

• Initialize field by field (next slide) or like this:

account_t a1 = { "12341234", 1000 };

Slide 10

C structs, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct account_t acct;

acct.balance = 0;

-> if what you have is a pointer to a struct:

struct account_t a;

struct account_t * acct_p = &a;

acct_p->balance = 1;

(could also use (*acct p).balance but uglier?)

CSCI 1120 April 11, 2018

Slide 11

structs, Continued

• (Look at example code briefly.)

Slide 12

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.a

• For example, the following declares a data type that can hold either a float

or an int:

union thing {

float f;

int i;

};

union thing t1;

t1 can hold either a float (t1.f) or an int (t1.i) but not both.

• More in textbook about this; it can be useful, but can also make code more

difficult to understand.

CSCI 1120 April 11, 2018

Slide 13

User-Defined Types and Library Code

• Library code often makes use of “opaque” types (e.g., FILE).

• Implementing this often involves separating functionality into interface (.h file

containing type definitions, function declarations) and implementation (.c file

containing function definitions.

• This leads into . . .

Slide 14

Separate Compilation and make — Review

• C (like many languages) lets you split large programs into multiple

source-code files. Typical to put function declarations (headers), constants,

etc., in file ending .h, function definitions (code) in file ending .c.

Compilation process can be separated into two steps: “compile” (convert

source to object code) and “link” (combine object and library code to make

executable).

• make can help manage compilation process. (Can also be useful as a

convenient way to always compile with preferred options.)

CSCI 1120 April 11, 2018

Slide 15

Example — Sorted Linked List

• As an example, consider writing code for a sorted linked list.

• (You’ve probably seen something like this in another language, and the ideas

are the same; it’s just the details that are a little messier.)

• My example follows the scheme laid out in the previous slide:

– a .h file that defines a type for the (nodes of) the list (we’ll represent a list

as a pointer to its first node) and declares some functions to perform

operations on the list, and

– a .c file with the code for the functions, and

– additional files for a test program.

• (Start looking at code.)

Slide 16

Minute Essay

• How have the video lectures been? In my thinking, the plus is that you can

replay if you miss something, but the minus is that you can’t ask questions.

But you may have other ideas?

