
CSCI 1120 (Low-Level Computing), Spring 2020

Homework 4

Credit: 20 points.

1 Reading

Be sure you have read, or at least skimmed, the assigned readings for classes through 9/18.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per problem.
Submit your program source (and any other needed files) by sending mail to my TMail address with
each file as an attachment. Please use a subject line that mentions the course and the assignment
(e.g., “csci 1120 hw 4” or “LL hw 4”). You can develop your programs on any system that provides
the needed functionality, but I will test them on one of the department’s Linux machines, so you
should probably make sure they work in that environment before turning them in.

1. (10 points) NOTE that this problem is meant as an opportunity to get some practice with
while loops in C, so you will only get full credit if you use at least one.

Newton’s method for computing the square root of a non-negative number x starts with an
initial guess r0 and then repeatedly refines it using the formula

rn = (rn−1 + (x/rn−1))/2

Repetition continues until the absolute value of (rn)
2 - x is less than some specified threshold

value. An easy if not necessarily optimal initial guess is just x. So for example the calculation
starts like this for x = 2:

r0 = 2 (1)

r1 = (r0 + 2/r0)/2 (2)

= (2 + 2/2)/2 (3)

= 1.5 (4)

r2 = (r1 + 2/r1)/2 (5)

= (1.5 + 2/1.5)/2 (6)

= 1.1417 (approximately) (7)

Write a C program that implements this algorithm and compares its results to those obtained
with the library function sqrt(). Have the program prompt for x, the threshold value, and a
maximum number of iterations; do the above-described computation; and print the result, the
actual number of iterations, the square root of x as computed using library function sqrt(),
and the difference between the value you compute and the one you get from sqrt(). Also
have the program print an error message if the input is invalid (non-numeric or negative —
but note that zero is okay).

Here are some sample executions (assuming you call your program newton and compile with
make)

1



CSCI 1120 Homework 4 Spring 2020

[bmassing@diasw04]$ ./newton

enter values for input, threshold, maximum iterations

2 .0001 10

square root of 2:

with newton’s method (threshold 0.0001): 1.41422 (3 iterations)

using library function: 1.41421

difference: 2.1239e-06

[bmassing@diasw04]$ ./newton

enter values for input, threshold, maximum iterations

2 .000001 10

square root of 2:

with newton’s method (threshold 1e-06): 1.41421 (4 iterations)

using library function: 1.41421

difference: 1.59472e-12

Hints:

• For this problem I recommend that you resist any impulse to split up your program into
several functions; I think it’s simplest and clearest to just put all the needed computation
in main().

• Remember that to use the library function sqrt() you need not only the appropriate
#include line (as documented in its man page) but also the compile flag -lm (also
documented in the man page). (The suggested Makefile includes this flag.)

• You may find the library function fabs() useful.

2. (10 points) NOTE that this problem is meant as an opportunity to get some practice with
for loops in C, so you will only get full credit if you use at least one.

C, like many programming languages, has a library function (rand()) that can be used to
generate a “random” sequence of numbers (quotes because it’s not truly random — more in
video lecture). Many languages have a similar function that generates “random” numbers
in some specified range, useful if for example you’re trying to simulate rolling a 6-sided die.
C doesn’t have such a function, but you can get the same effect using rand() and a little
additional code. rand() itself generates a number between 0 and the library-defined constant
value RAND MAX, so to get a value in a smaller range you have to somehow map the larger
range to the smaller one. The somewhat obvious way to do this is by computing a remainder
(e.g., to map to two possible values, assign even values to 0 and odd values to 1). (I’ll call this
the “remainder method”.) But with some implementations of rand() this gives results that
aren’t very good. The conventional wisdom is therefore to instead try to do a more-direct
map (e.g., to map to two possible values, assign values from 0 through RAND MAX/2 to 0 and
the remaining values to 1). (I’ll call this the “quotient method”.)

Your mission for this problem is to complete a C program that, given a number of samples N
and a number of “bins” B generates a sequence of N “random” numbers, uses both methods
(remainder and quotient) to map each generated number to a number between 0 and B-1
inclusive, and counts for each method how many elements of the sequence fall into each bin

2



CSCI 1120 Homework 4 Spring 2020

(e.g., for each method bin 0 is how many elements of the sequence map to 0), and prints the
result, as in the sample output below. To help you (I hope!) I’m providing a starter program,
link below, which you should use as your starting point. Code at the bottom of the program
shows how to apply both methods to something returned by rand(). The remainder method
is straightforward; the quotient method is less so, but see the footnote1 for an explanation.

One other thing to know about rand() is that by default it always starts with the same
value (and produces the same sequence). To make it start with a different value, you can call
srand() with an integer “seed”, so your program should prompt for one of those too.

Sample execution (assuming you call your program rands and compile with make):

[bmassing@diasw04]$ ./rands

seed?

5

how many samples?

1000

how many bins?

6

counts using remainder method:

(0) 154

(1) 188

(2) 171

(3) 161

(4) 155

(5) 171

counts using quotient method:

(0) 172

(1) 175

(2) 183

(3) 150

(4) 168

(5) 152

If you feel a bit more ambitious you could also have the program print maximum and minimum
counts and the difference between them, as a crude measure of how uniform the distribution
is:

[bmassing@diasw04]$ ./rands

seed?

5

1 If you’re curious about the admittedly cryptic formula: Suppose n is the value returned by rand(). We could
convert it to a bin number in two steps: First, we scale it to a floating-point number in the range from 0 up to but
not including 1, thus:

x = n/(RAND MAX+ 1)

(We divide by RAND MAX+1 so the largest possible value maps to something still slightly less than 1. Note also that
in the code we have to be sure this addition is done using floating point, since otherwise it could overflow; we can do
this by writing the 1 as 1.0.) Then we scale this range of floating-point values to our desired range (still in floating
point) by multiplying by B, which gives from 0 up to but not including B. Finally, we convert back to an int with a
cast, which drops the fractional part, and leaves us with an index between 0 and B-1 inclusive.

3



CSCI 1120 Homework 4 Spring 2020

how many samples?

1000

how many bins?

6

counts using remainder method:

(0) 154

(1) 188

(2) 171

(3) 161

(4) 155

(5) 171

min = 154, max = 188, difference 34

counts using quotient method:

(0) 172

(1) 175

(2) 183

(3) 150

(4) 168

(5) 152

min = 150, max = 183, difference 33

(You will get an extra-credit point for doing this.)

Here is a starter program that prompts for the seed, generates a few “random” numbers, and
illustrates the two methods of mapping to a specified range: rands.c.

Of course, your program should check to make sure all the inputs are positive integers. (Yes,
error checking is a pain, but it’s an incentive to get better at copy-and-paste?)

Hints:

• If you find the problem description confusing (many students do, alas), maybe an exam-
ple will clarify a bit:

Suppose input specifies 100 samples and 4 bins.

The program should generate a sequence of 100 “random” numbers.

For the remainder method, bin 0 will be a count of elements n of this sequence for which
n/4 gives a remainder of 0, bin 1 will be a count of elements n of this sequence for which
n/4 gives a remainder of 1, and so forth.

For the quotient method, bin 0 will be a count of elements n of this sequence that fall
into the first 1/4 of the range 0 through RAND MAX, bin 1 will be a count of elements n
of this sequence that fall into the second 1/4 of the range 0 through RAND MAX, and so
forth.

If you still find this confusing, please ask for help! I think all the ACM tutors have done
this problem and they can likely explain to you, or I’m happy to give it another try
myself.

4

http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2020fall/Homeworks/HW04/Problems/rands.c


CSCI 1120 Homework 4 Spring 2020

3 Pledge

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).2 Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file pledge.txt (no word-processor files please).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

4 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what if anything you think you learned from the assignment, and what if anything you found
found interesting, difficult, or otherwise noteworthy. For programming assignments, it should go
in the body of the e-mail or in a plain-text file essay.txt (no word-processor files please).

2 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is
the ACM’s Special Interest Group on CS Education.

5


