
CSCI 1312 (Introduction to Programming for Engineering), Fall
2015

Homework X

Credit: Up to 30 extra-credit points.

1 General Instructions

Do as many (or few) of the following problems as you like. Notice that you can receive at most
30 extra-credit points, but be advised that any points you earn can only help your grade — that
is, I will add them to your total points before dividing by the sum of the points on the required
assignments.

I am also open to the possibility of giving extra credit for other work — other problems/programs,
a report on something course-related, etc. If you have an idea for such a project, let’s negotiate
(by e-mail).

For this assignment, please work individually, without discussing the problems with other stu-
dents. If you want to discuss problems with someone, talk to me.

2 Programming Problems

Do as many (or as few) of the following optional programming problems as you like. Submit source
code and other files by e-mail, as for previous assignments. (I.e., submit your program source
(and any other needed files) by sending mail to bmassing@cs.trinity.edu, with each file as an
attachment. Please use a subject line that mentions the course and the assignment (e.g., “csci 1312
extra credit”). You can develop your programs on any system that provides the needed functionality,
but I will test them on one of the department’s Linux machines, so you should probably make sure
they work in that environment before turning them in.

1. (Up to 5 extra-credit points.) Write a C program that, given the name of a text file as a
command-line argument, reads the contents of the file and produces a histogram of word
lengths, where a “word” is one or more alphabetic characters. So for example given an input
file containing the following text

Now is the time for all good persons to come to the aid of their party.

A really long word, though perhaps not the longest in English,

is "antidisestablishmentarianism" (28 letters).

it would produce the following

1 *

2 ******

3 ********

4 *****

5 **

6 **

1

CSCI 1312 Homework X Fall 2015

7 *****

8

9

10

11

12

13

14

15

16

17

18

19

>=20 *

(Notice that it groups all words of length at least 20 into a single output line — simpler to
code and in my opinion reasonable.)

2. (Up to 5 extra-credit points.) Homework 5 asked you to write a program that compared
two ways of assigning “random” numbers to “bins”. Output was a list of counts for the two
methods. A possibly more useful output would be a (vertical) bar graph showing values of
the counters. Improve the program (either your solution or the sample solution) so that it
prints such a graph for each of the two methods. Since the height of these bars could be
quite large if the number of samples is large, have the program also get as input a “number
of samples per row” and use it to create the graph, with the height of each bar equal to the
corresponding counter divided by this number of samples per row. Sample execution:

seed?

5

number of samples?

1000

number of bins?

6

samples per graph row?

10

counts using remainder method:

(0) 154

(1) 188

(2) 171

(3) 161

(4) 155

(5) 171

....X.............

....X..X........X.

....X..X..X.....X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

2

CSCI 1312 Homework X Fall 2015

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

counts using quotient method:

(0) 172

(1) 175

(2) 183

(3) 150

(4) 168

(5) 152

.......X..........

.X..X..X..........

.X..X..X.....X....

.X..X..X.....X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

.X..X..X..X..X..X.

Hint: You could solve this problem just using the variables in the original program, but
it’s easier to represent the graph as a 2D array of characters. There is an example of doing
something similar if simpler in sample program array2d.c.

3

CSCI 1312 Homework X Fall 2015

3. (Up to 5 extra-credit points.) Write a function that evaluates polynomial p(x) given the
coefficients of p and one or more values of x. You can prompt for the coefficients or get them
from command-line arguments; once you have them, repeatedly prompt for values of x until
the user enters something non-numeric. A supposedly efficient way to evaluate a polynomial is
with “Horner’s rule” (check the Wikipedia article if you’re not familiar with this approach),
which can be implemented with a loop or recursion. (My program does both.) A sample
execution prompting for the coefficients:

a.out

degree of polynomial (highest power)?

3

coefficients (starting with highest power)?

2 4 3 5

p(x) = 2.000000(x**3) + 4.000000(x**2) + 3.000000(x**1) + 5.000000

x?

10

iterative version:

p(10.000000) = 2435.000000

recursive version:

p(10.000000) = 2435.000000

x?

100

iterative version:

p(100.000000) = 2040305.000000

recursive version:

p(100.000000) = 2040305.000000

x?

invalid input

and one getting them from the command line:

a.out 2 4 3 5

p(x) = 5.000000(x**3) + 3.000000(x**2) + 4.000000(x**1) + 2.000000

x?

10

iterative version:

p(10.000000) = 5342.000000

recursive version:

p(10.000000) = 5342.000000

x?

100

iterative version:

p(100.000000) = 5030402.000000

recursive version:

p(100.000000) = 5030402.000000

x?

invalid input

4. (Up to 10 extra-credit points.) In most of the programs we wrote in class and for homework

4

CSCI 1312 Homework X Fall 2015

we made some attempt to “validate” user input (e.g., check that inputs are numeric when
they’re supposed to be, positive when they’re supposed to be, etc.). Doing this for many
variables is apt to produce a lot of uninterestingly-repetitive code. Also, if the input was not
valid we just bailed out of the program rather than trying again. Propose and implement
one or more functions that would address one or both of these possible shortcomings, and
submit it/them with a short program that could be used to test it/them. Be sure to include
comments that describe the function’s parameters and behavior (does it exit the program on
error or prompt again or what). You might like to have functions for working with input from
standard input and also functions that work with command-line arguments.

5. (Up to 10 extra-credit points.) In class I said that getting “a line” of character data (a
sequence of characters read from a file or standard input ending with the end-of-line character)
was surprisingly difficult and error-prone in C. Propose and implement a function or functions
that gets a full line of character data in a way that does not limit the length of the input
data but also does not risk overflowing an array, and submit it/them with a short program
that could be used to test it/them. (You will almost surely need malloc to make this work.)

6. (Up to 10 extra-credit points.) The textbook presents code for various sorting algorithms,
some suggestions for testing them, and an analysis of how the amount of computation involved
(estimated as the number of comparisons) depends on the number of elements being sorted.
One way to test that a particular implementation of one of these algorithms is correct and
also check the claim about amount of computation goes as follows: Generate an array of N

values using rand(), sort them, and have the program check that the resulting values are in
order. During the sort, count the number of comparisons and print that at the end. Your
mission for this problem is to write such a program. Input to the program is a seed (to
pass to srand) and a count (number of values to generate/sort). Output is a message saying
whether the sort worked (i.e., the values are in order) and a count of comparisons. You could

prompt for the input, but if instead you get it from command-line arguments you can more
easily call the program repeatedly for different input sizes. And you could use a fixed-size
or variable-length array for the data, but if you want to allow for running the program with
large numbers of elements it’s probably better to allocate space for the array with malloc.
How much credit you get for this problem depends on how much of this advice you follow
in addition to whether the program does what it’s supposed to do. Below are some sample
executions of such a program, written to get its arguments from the command line:

a.out 5 10

sort of 10 values (seed 5) succeeded, 45 comparisons

a.out 5 100

sort of 100 values (seed 5) succeeded, 4950 comparisons

a.out 5 1000

sort of 1000 values (seed 5) succeeded, 499500 comparisons

a.out 5 10000

sort of 10000 values (seed 5) succeeded, 49995000 comparisons

5

