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Administrivia

• Reminder: Homework 1 due Wednesday.

• “Useful links” on course Web site has links to information about UNIX/Linux

commands, etc.

• For minute essays, put “minute essay” in the subject line. You can ask me

anything course-related, but if your question needs a quick reply, please put

“urgent” in the subject line.
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Command-Line Tools — A Suggestion

• Review of commmand-line tools on next slides.

• Sometimes people comment “lots of commands to learn”. If you have trouble

remembering the commands (which you likely will at first!): In times past

beginners got paper “cheat sheets” of commonly-used commands. Maybe

make yourself an electronic equivalent?
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Commands For Navigating the Filesystem

• Unlike GUIs (at least sometimes!), shell programs (mostly?) have a notion of

“current/working directory”. pwd shows what it is. cd changes it.

• mkdir to create a new directory. rmdir to delete one (must be empty).

• ls to list information about files and directories. Just ls shows contents of

current directory.
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Commands For Working With Files

• cat to show contents of a file. more or less to show it a screenful at a

time. (More about less on next slide.)

• cp to copy one file to another. -i to warn about overwrites.

• mv to move or rename a file. -i to warn about overwrites.

• rm to delete a file. (Note — no recycle bin, so use with caution! or -i to

prompt.)
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Other Useful Commands

• man command to get information (“man page”) about command Also

displays information about functions.

Sometimes there are multiple man pages with the same name (e.g., a

command and a function); man -a to get all of them.

man -k keyword to look for commands that might have something to do

with keyword.

• man uses less to page through documentation. Up and down arrows work

to move through file. / searches for text in file. q exits. h shows list of other

options.
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Text Editors — Review

• “Text editor” is a program for creating and editing plain text (as opposed to,

e.g., a word processor).

• I use and will show in this class vim. Not especially beginner-friendly but

(IMO!) “expert”-friendly, and good for working with program source code.

• Start vim with vim filename. Can only enter text in “insert mode”. Start with

i or a. Exit with ESC.
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vim Tips

• Biggest hurdle may be the notion of modes. (But you already know about this,

sort of? Word processors have insert/overwrite modes.)

• Cut/copy/paste basics:

dd cuts a whole line. yy copies a whole line.

p pastes after the current line. P pastes before the current line.

• Search by typing /, text to search for, Enter. Repeat search with n.

Search-and-replace using this, cw, and .
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More vim Tips

• :help brings up online help. :help visual-mode describes one

feature you may like.

• u to undo. :w (“write”) to save. :q to exit. :q! to exit without saving.
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vim Tips — Errors/Mistakes

• If you type just q rather than :q, vim thinks you want to record a macro.

Screen will show “recording”. Press q to make it stop.

• If you type q: rather than :q, vim thinks you want it to display a history of

commands and shows them to you in a subwindow. Type :q to make that go

away.
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vim Tips — Errors/Mistakes, Continued

• If you just close the terminal window when running vim, that “crashes” vim.

So what? Well . . .

• vim creates a hidden file that saves information that can help with recovery if

it crashes. Deleted on normal exit, otherwise not. And then next time you start

vim on that file — screenful of messages starting ”ATTENTION” and ”Found

a swap file” and finally asking you whether you want to open it anyway or

what. If you respond R vim will try to recover unsaved changes; otherwise

not. To actually delete this hidden file, so you don’t get that same screenful of

messages next time, respond D.
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UNIX Filesystem Basics — Review

• Unlike in Windows (and Mac, sometimes), UNIX filesystems are

case-sensitive (so hello and Hello are different files).

• Files have two levels of ownership — “owner” (user) and “group”. Groups

allow sharing files with some but not all users.

• File access is controlled by “permissions”. Three levels (owner, group, and

everyone else), three types of access (read, write, execute).

• ls -l shows permissions. chmod changes them.
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Input/Output Redirection in UNIX/Linux

• A key feature of command-line environments, one that provides a lot of power

— I/O redirection. Idea is that programs can get (text) input from different

sources (keyboard, file, “pipe”) and write (text) output to different destinations

(“screen”, file, “pipe”). Example:

myprogram < test1-in > test1-out

to have myprogram get its input from test1-in rather than the

keyboard, and put its output in test1-out rather than showing it on the

screen. (Overwrites test1-out. To append instead, use >>

test1-out.)

• “Pipes” connect output of one program with input of another. A common “use

case” is to page through long output by piping it into less — e.g.

ps aux | less
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A First Program in C

• As you read sections of the textbook you may want to try running the

programs yourself. More about all of this soon, but today let’s do a “hello

world” program . . .

• (“Hello world” program? Yes. Traditional in some circles to have one’s first

program in a language print “hello, world” to “the screen”. Origins of this

tradition — inventors of C.)
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A First Program in C, Continued

• First write the program using a text editor (e.g., vim) and save it with a name

ending in .c (say hello.c). (See the “sample programs” Web page for

what it looks like.)

• Next, compile the program (turn it into something the computer can execute).

Simplest command for that:

gcc hello.c

If no syntax or other errors, produces an “executable” file a.out.

• Run the program by typing a.out at the command prompt. (If that doesn’t

work, try ./a.out.)
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Minute Essay

• None really — just tell me you were here.


