CSCI 1312 September 11, 2015

Administrivia

e A little more about homeworks:

Syllabus says you have the option of turning them in late for reduced credit.
Another option — turn in what you have by the deadline, then turn in
something better by the “not accepted past” dates. Smaller or no penalty.
Slide 1 Remember to use a helpful-to-me subject line that mentions course as well as
assignment — some confusion for me this time since two courses had

homework due same day.

You will get grade and feedback by e-mail.

e Homework 2 to be on the Web probably Monday, due the following Monday.
More about that in the next class.

e No office hours today.

Programming Basics and C

e First lecture describes relationship between what humans write (“source
code”) and what computers execute (“machine language”).

e For C, usual process is that you write source code, and then it must be
transformed not just into machine language, but into a complete “executable
file” (machine language for your code, plus machine language for any library

Slide 2 functions, plus information so operating system can load it into RAM and start

it up). (Detail: This is for “hosted environment”; in some environments in

which C is used, there may be no o/s.)
e So, what happens to your code . ..
First it's “compiled” into “object code” (machine language).
Then it's “linked” with any library object code to form “executable file”.

Sometimes this happens more or less invisibly when you run command to
compile.

CSCI 1312 September 11, 2015

“Hello World” Program Revisited

e ook again at the program we wrote in class previously. Most of it is standard
boilerplate, to be discussed further soon. Single line you should pay attention

to now is the one with pri nt f .

e Goal for today — describe how to extend this to get input from “standard
Slide 3 input” (keyboard by default), do simple computing, write results to “standard

output” (terminal window by default).

Variables in C

e In C as in most/many other programming languages, you need temporary
storage for data — e.g. someplace to save an input value and/or intermediate

results. For this we use variables.

e Again in C as in many others — variables. In C variables must be declared,
Slide 4 each with both a name and a type. Effect of declaring a variable is to reserve
RAM for a value of the specified type and give it a name that can be
referenced. (Similar to Matlab, except for choice of types?) What a name can

look like is somewhat restricted (see textbook).

e Variables are given values by assignment statements (using =, which here
means “assign value on right to variable on left” rather than equality as in

math. Okay to change value with repeated assignments.

CSCI 1312 September 11, 2015

Expressions in C

e What'’s on the right side of an assignment — expression.

e Expressions in C are similar to those in math, with some
differences/extensions, partly due to limited range of symbols and partly due
to how hardware usually works:

Slide 5 * and/ for multiplication and division, and on integers division produces

quotient only; to get remainder use %

e An expression has a value, which is determined by evaluating it. Evaluation
may have side effects —e.g., pri ntf (" hel | o\ n") is an expression,
with the side effect of “printing” and a value that often is not used.

Assignment Statements Revisited

e Simplest programs are often basically a sequence of assignment statements
(plus some “statements” that are just expressions, such as that pri nt f in
the “hello world”program).

e Unless otherwise indicated, statements are executed in the order in which

Slide 6 they appear in the code.

CSCI 1312 September 11, 2015

Simple 1/0 in C

e Use pri ntf to display predefined text and values of variables. Syntax is
that of “function call” (more later) with first parameter a “format string” that
may include “conversion specifications”. Followed by zero or more
expressions, one for each conversion specification. When statement is
executed, expressions are evaluated and the results turned into something

Slide 7 . . . I
printable using those conversion specifications.

e Use scanf to getinput. (It's not really very good for interactive programs,
but it's what almost all intro texts use, so we will too, but keep in mind that it
has limitations and annoyances). Syntax very similar to that of pr i nt f
except that rather than expressions you have pointers that say where to store
value(s). More about pointers later; for now usually name of variable

preceded by &

Simple Examples

e (Tried some simple examples in class. Code on “sample programs” page.)

e Advice: ALWAYS compile with optional - VI | flag. Sometimes gives

additional warnings that are helpful!

Slide 8

CSCI 1312 September 11, 2015

(Example — “Making Change”)

e Problem statement: Given a number of pennies, show how to represent it with

minimum number of coins (pennies, nickels, etc.).

e First define the problem, possibly doing some examples without a computer.
Might be a good time to also come up with a short list of sample
Slide 9 inputs/outputs that can be used for testing later.

e Next figure out a strategy for solving it using the tools you have.

e Finally turn that into source code. Good idea to start by writing comments,
because . ..

When writing source code you are writing for two audiences! the compiler,
yes, but also usually for human readers.

(To be continued.)

® Any questions? How similar is all of this to something you've used before,

such as Matlab?

Slide 10

