
CSCI 1312 September 16, 2015

Slide 1

Administrivia

• (None?)

Slide 2

Sidebar: bc, Some Advice About Text-Mode Programs

• Last time I showed using the simple command-line calculator bc? a little

more about it . . .

• From its man page, it’s “an arbitrary precision calculator language”. Simplest

usage is what I showed in class — type arithmetic expressions and have

them evaluated. Also supports variables. Full details in man page.

• How to exit? like many text-mode Linux programs, control-D (“end of file”)

works. Most of them also have a keyword to exit — “quit”, “exit”, etc.

Another way to exit — and this will work for your C programs too — is

control-C, which interrupts the program. Not graceful but usually works.



CSCI 1312 September 16, 2015

Slide 3

Number Representation, Revisited

• As discussed previously, most digital computers use fixed-size binary

numbers to represent non-negative integers.

• What about negative integers? several schemes have been tried. Most

common now is “two’s complement” (no, I don’t like the apostrophe either).

Before defining, talk a little about addition . . .

Slide 4

Machine Arithmetic — Integer Addition and Negative
Numbers

• Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we

easily get 0 when we add −n and n.

Computing −n is easy with a simple trick: If m is the number of bits we’re

using, addition is in effect modulo 2m. So −n is equivalent to 2m
− n, which

we can compute as ((2m
− 1) − n) + 1).

• So now we can easily (?) do subtraction too — to compute a − b, compute

−b and add.



CSCI 1312 September 16, 2015

Slide 5

Machine Arithmetic — Integer Multiplication

• Multiplying binary numbers also works just like multiplying base-10 numbers

— for each digit of the second operand, compute a partial result, and add

them.

• (This can get slightly tricky, when adding more than two partial results

involves carrying, but basic idea is straightforward extrapolation from how it

works in base 10.)

Slide 6

Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.



CSCI 1312 September 16, 2015

Slide 7

Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point. “IEEE

754 standard” spells out details; most current hardware implements it.

• Idea is similar to scientific notation — represent number as a binary fraction

multiplied by a power of 2:

x = (−1)sign × (1 + frac) × 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the

other two fields varies — e.g., for usual single-precision, 8 bits for exponent

and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.

Slide 8

Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some

properties not (completely) shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers

can’t. Also, some quantities that can be represented easily in decimal can’t be

represented exactly in binary.

• Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)



CSCI 1312 September 16, 2015

Slide 9

C and Representing Numbers — Integers

• Computer hardware typically represents integers as a fixed number of binary

digits, using “two’s complement” idea to allow for representing negative

numbers.

• C, like many (but not all!) programming languages bases its notion of integer

data on this, but also has a notion of different types with different sizes.

• Unlike many more-recent languages, C defines for each type a minimum

range rather than a definite size. Intent is to allow efficient implementation on

a wide range of platforms, but means some care must be taken if you want

portability.

Slide 10

C and Representing Numbers — Real Numbers

• Hardware also typically supports “floating-point” numbers, with a

representation based on a base-2 version of scientific notation. This allows

representing not only fractional quantities but also allows representing larger

numbers than would be possible with fixed-length integers. Notice that only

fractions that can be written with a denominator that’s a power of two can be

represented exactly.

• Again C goes along with this and provides different “sizes” (float and

double). As with integers, exact sizes not specified, only minimum criteria.



CSCI 1312 September 16, 2015

Slide 11

Text Data

• Remember that computers represent everything using ones and zeros. How

do we then get text? well, we have to come up with some way of “encoding”

text characters as fixed-length sequences of ones and zeros — i.e., as

small(ish) numbers.

• (To be continued later in the semester.)

Slide 12

Minute Essay

• Any questions about today’s material, or number representation in general?


