CSCI 1312 September 16, 2015

Administrivia

e (None?)

Slide 1

Sidebar: bc, Some Advice About Text-Mode Programs

e Last time | showed using the simple command-line calculator bc? a little

more aboutit...

e From its MAN page, it's “an arbitrary precision calculator language”. Simplest
usage is what | showed in class — type arithmetic expressions and have

Slide 2 them evaluated. Also supports variables. Full details in M&N page.
e How to exit? like many text-mode Linux programs, control-D (“end of file”)

works. Most of them also have a keyword to exit — “quit”, “exit”, etc.

Another way to exit — and this will work for your C programs too — is
control-C, which interrupts the program. Not graceful but usually works.




CSCI 1312 September 16, 2015

Number Representation, Revisited

e As discussed previously, most digital computers use fixed-size binary

numbers to represent non-negative integers.

e \What about negative integers? several schemes have been tried. Most
common now is “two’s complement” (no, | don't like the apostrophe either).
Slide 3 Before defining, talk a little about addition . ...

Machine Arithmetic — Integer Addition and Negative
Numbers

e Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

e Two’s complement representation of negative numbers is chosen so that we
Slide 4 easily get 0 when we add —n and n.

Computing —n is easy with a simple trick: If m is the number of bits we're
using, addition is in effect modulo 2. So —n is equivalent to 2" — n, which

we can compute as ((2™ — 1) —n) + 1).

e So now we can easily (?) do subtraction too — to compute a — b, compute
—b and add.




CSCI 1312 September 16, 2015

-

Machine Arithmetic — Integer Multiplication

e Multiplying binary numbers also works just like multiplying base-10 numbers
— for each digit of the second operand, compute a partial result, and add

them.

e (This can get slightly tricky, when adding more than two partial results
slide 5 involves carrying, but basic idea is straightforward extrapolation from how it

works in base 10.)

Binary Fractions

e \We talked about integer binary numbers. How would we represent fractions?

e With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.

Slide 6




CSCI 1312

Slide 7

Slide 8

September 16, 2015

-

Computer Representation of Real Numbers

o How are non-integer numbers represented? usually as floating point. “IEEE

754 standard” spells out details; most current hardware implements it.

e |dea is similar to scientific notation — represent number as a binary fraction
multiplied by a power of 2:

T = (_1)sz’gn X (1 +fmc) % 2bias+exp

and then store sign frac, and ezp. Sign is one bit; number of bits for the
other two fields varies — e.qg., for usual single-precision, 8 bits for exponent
and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.

e The integers and real numbers of the idealized world of math have some

e Math integers can be any size; computer integers can't.

e Math real numbers can be any size and precision; floating-point numbers

o Math operations on integers and reals have properties such as associativity

Numbers in Math Versus Numbers in Programming

properties not (completely) shared by their computer representations.

can't. Also, some quantities that can be represented easily in decimal can't be
represented exactly in binary.

that don’t necessarily hold for the computer representations. (Yes, really!)




CSCI 1312 September 16, 2015

4 )

C and Representing Numbers — Integers

e Computer hardware typically represents integers as a fixed number of binary
digits, using “two’s complement” idea to allow for representing negative
numbers.

e C, like many (but not all') programming languages bases its notion of integer
Slide 9 data on this, but also has a notion of different types with different sizes.

e Unlike many more-recent languages, C defines for each type a minimum
range rather than a definite size. Intent is to allow efficient implementation on
a wide range of platforms, but means some care must be taken if you want
portability.

C and Representing Numbers — Real Numbers

e Hardware also typically supports “floating-point” numbers, with a
representation based on a base-2 version of scientific notation. This allows
representing not only fractional quantities but also allows representing larger
numbers than would be possible with fixed-length integers. Notice that only
fractions that can be written with a denominator that's a power of two can be

Slide 10
represented exactly.

e Again C goes along with this and provides different “sizes” (f | oat and
doubl e). As with integers, exact sizes not specified, only minimum criteria.




CSCI 1312 September 16, 2015

Text Data

o Remember that computers represent everything using ones and zeros. How
do we then get text? well, we have to come up with some way of “encoding”
text characters as fixed-length sequences of ones and zeros — i.e., as

small(ish) numbers.

Slide 11 ® (To be continued later in the semester.)

e Any questions about today’s material, or number representation in general?

Slide 12




