
CSCI 1312 September 25, 2015

Slide 1

Administrivia

• Homework 1 and 2 grades sent by e-mail. If you didn’t get one — are you

sure you turned something in?

• Homework 3 on the Web. Due next Monday. Should be doable with material

up through last week.

• Reminder: Quiz 1 Wednesday. Topics will come from what we covered up

through last week. Rules as described in “administrivia” last time.

Slide 2

Minute Essay From Last Lecture

• A few people said things that support that line I quote so often about

programming not being a spectator sport.

• A few people commented on the (5/9) being evaluated using integer division.

(That was part of the point of this problem.)

• Others commented on “int” having a limited range. Hm, interesting what

examples people tried?



CSCI 1312 September 25, 2015

Slide 3

Quotes of the Day/Week/?

• From a key figure in the early days of computing:

“As soon as we started programming, we found to our surprise that it wasn’t

as easy to get programs right as we had thought. Debugging had to be

discovered. I can remember the exact instant when I realized that a large part

of my life from then on was going to be spent finding mistakes in my own

programs.” (Maurice Wilkes: 1948)

• From someone in a discussion group for the Java programming language:

“Compilers aren’t friendly to anybody. They are heartless nitpickers that enjoy

telling you about all your mistakes. The best one can do is to satisfy their

pedantry to keep them quiet :)”

Slide 4

Functions and Problem Decomposition

• So far all our programs have been one big chunk of code. This is okay for

simple programs, but quickly becomes difficult to understand as problems get

bigger.

• Further, some things we don’t want to, or can’t, really write ourselves, such as

the code for input/output.

• So C, like many/most other programming languages, gives you a way of

decomposing problems into subproblems. C calls them functions. Using this

feature to good effect is something of an art, but may teach you something

about problem decomposition in general, which is a useful skill.



CSCI 1312 September 25, 2015

Slide 5

Functions in C

• C functions are similar to functions in math, except that they can have side

effects (similar to how evaluation of expressions can have side effects).

• We will talk a little now, and more next time, about how to define our own

functions. Notice for now that every program you / we have written so far

defines a function called main, and most of them use system library

functions scanf and printf.

Slide 6

Functions in C, Continued

• Every function has

– A name (where rules for names are the same as those for variables).

– Zero or more inputs (called parameters).

– A return type (void to indicate that the function doesn’t return anything).

– Some code to be executed when the function is called.

• When you call (use) a function, you

– Supply values for inputs (pass in values for parameters).

– Optionally, use the value returned by the function. The function call is an

expression, as discussed previously, and its value is the value returned by

the function.



CSCI 1312 September 25, 2015

Slide 7

Defining and Using Functions

• Simple example of defining and using a function to add two integers:

int add(int a, int b) {

return a + b;

}

int main(void) {

int result = add(1, 2);

printf("%d\n", result);

return 0;

}

• add has two parameters (a type of variable) called a and b. When we call

add from main, the values 1 and 2 are copied into these variables. The

code in add executes until it reaches a return. At that point, we go back

to the calling function, and the value of the function call is whatever is after

the keyword return.

Slide 8

Functions in C — Declaration Versus Definition

• Some languages let you put function definitions in any order you want, and

even split them up among files.

• But this requires the compiler to be somewhat smarter than C compilers are

required to be. In C, functions must either be defined or declared before

being used.

• Function declarations give function name, number and types of parameters,

and return type. Syntax is just like that for function definitions, except no

parameter names needed, and body is replaced with a semicolon.

• For your own functions, you can either define them before using them, or

define them in whatever order you like and put declarations at the top.

• For library functions? declarations are part of what’s supplied by #include

directives.



CSCI 1312 September 25, 2015

Slide 9

The main Function, Revisited

• As noted, every C program you / we have written so far includes a definition of

a function called main. All complete C programs must have such a function.

• main is defined in your code:

– It has no parameters. (Actually, it can — there’s an alternative definition

that allows it to accept command-line arguments, similar to the ones that

follow commands such as gcc, ls, etc. Later!)

– It returns an integer value.

• main is called by some type of environment (the command shell for us,

when you type a.out after compiling). It gives your code the optional

parameters (more about this later) and receives the value you return. Return

value can be used to indicate success/failure (useful for shells that

themselves support conditional execution).

Slide 10

“Hello World” Program, One More Time

• Historical/cultural aside: Among computer programmers, it’s considered

traditional that the first program one writes in a new language just prints “hello

world” to the screen — maybe not the simplest possible program, but close.

Particularly apt for C, because the tradition was begun by an early and still

authoritative work on C (The C Programming Language, Kernighan and

Ritchie).

• Almost all of this program, and other examples, should now more or less

make sense! (Exceptions are representation of character strings, & syntax for

parameters. Soon!



CSCI 1312 September 25, 2015

Slide 11

C Library Functions

• Standard C comes with a number of library functions to do things many

programs want to do.

• Examples we’ve seen so far — scanf, printf.

• UNIX/Linux systems normally have man pages for these functions, describing

parameters and return values in full detail (hence, not always easy reading).

(Tip: man printf gives the man page for a command rather than the C

function. Use man 3 printf to get what we want.)

(Tip: When reading a man page, h will bring up a summary of what keys do

what — page up/down, quit, etc.)

Slide 12

Defining and Using Functions — Example

• As a somewhat contrived example, we could rearrange the “solve a quadratic

equation” example from last week:

• By putting the code to solve the equation and print results in a function, we

can have it first do some examples/tests before prompting the user for

inputs . . .



CSCI 1312 September 25, 2015

Slide 13

Minute Essay

• Any questions? otherwise just “sign in”.


