
CSCI 1312 September 30, 2015

Slide 1

Administrivia

• Next quiz in a week.

Slide 2

Functions in C — Recap

• Functions in C (as in other programming languages) are a way to break up a

big problem into more manageable pieces and also to avoid duplication of

code/effort.

• The basic idea is similar to mathematical functions (something that

transforms input(s) to output), but functions in C (again as in many — though

not all! — programming languages) can have “side effects”.



CSCI 1312 September 30, 2015

Slide 3

Functions and Scope

• In addition to a type and a name, each variable has a scope in which it’s valid.

Variables declared inside a function can be used only within that function.

Variables declared outside all functions can be used anywhere — global

variables — though this is almost always a bad idea.

• One result — variables with the same name in different functions are different

variables.

Slide 4

Functions and Parameters

• We said last time that functions have parameters. Another word for them is

arguments (you will see this is some compiler error messages). More

terminology:

– Formal parameters are the parameters as viewed from the function — can

think of these as additional variables whose scope is the function.

– Actual parameters are the values with which the function is called.

• When a function is called, actual parameters are copied to formal parameters

— “pass by value”, meaning that changes made in the function to its copies

are not reflected in the calling program’s copies. Notice also that actual

parameters can be expressions.



CSCI 1312 September 30, 2015

Slide 5

Function Return Values

• Most functions return a value (but only one); it’s the value of the expression

following the keyword return, in the function definition. The type of this

value is given as part of the function definition. If you don’t want to return

anything, can make this void. If you want to return two things? must use

“pointer variables” (addresses).

• Function calls are expression, so they have a value — whatever is returned by

the function.

Slide 6

Pointer Variables, Briefly

• (Normally we wouldn’t do this just yet, but the textbook lets this cat out of the

bag, and it does help in understanding scanf.)

• Motivation: Some functions need to return multiple values. In higher-level

languages there are ways to do this via return values, but not in C. Instead,

you can make use of parameters declared as “pointer variables” — meaning

that what is copied is . . . Well, back up a step.



CSCI 1312 September 30, 2015

Slide 7

Variables and Memory — Simplified View

• A crucial component of computer hardware is the “memory” (meaning

random-access memory, not disk!). A good-enough-for-now approximation

models this as a list of numbered locations/cells, each consisting of a fixed

number of bits. An “address” is an index into this list; the corresponding bits

are its “contents”.

• Variables in programs correspond to one or more of these cells, and we can

talk about the “address” of the variable (the index of the first cell) and its

“value” (contents of the cell, interpreted based on the variable’s type — e.g.,

the same bits mean one thing for a C int and another thing for a C float

— even assuming those are the same number of cells, which they often are

but need not be).

Slide 8

Pointer Variables, Continued

• C programs that need to return multiple values can declare some parameters

as “pointers”, as in this example:

int divide(int a, int b, int * quotient, int *
remainder);

The * indicates that what is to be copied to the function is not a value but an

address.

• To call such a function, you must provide an address. More than one way to

do this, but for now the one we know about is the name of a variable preceded

by the “address of” operator &. (“Aha!”?)

• Within the function, you can change the value at the address specified by this

kind of parameter using the “dereference” operator * — e.g.,

*quotient = a/b;



CSCI 1312 September 30, 2015

Slide 9

Example

• As an example, revise the quadratic-equation program once more . . .

• Computing and printing roots in a single function was never a great design

choice (my opinion, but probably shared by others) but was all we could do

without pointer variables.

• Now that we have them, we can split it into two functions, one that computes

the roots and another that prints them. This would let us use the “compute”

function in situations where we want to do something with the roots rather

than just printing them.

Slide 10

Minute Essay

• None — quiz.

• Quiz rules:

– Okay to consult textbook, course Web site, your own work (notes,

programs, etc.)

– Not okay to use computer for any purpose other than browsing the above.


