
CSCI 1312 October 12, 2015

Slide 1

Administrivia

• Reminder: Homework 3 due today.

• Quiz 2 next Monday.

• Midterm a week from Friday (10/23). (Okay?)

• Next homework to be on the Web soon (today or tomorrow); due next

Wednesday.

• If you were in class Friday but didn’t send me a minute essay, please do so!

this is what I use in calculating the attendance part of your grade.

Slide 2

Recursion — Review

• (Review notes from last time.)

• (Additional example(s)?)



CSCI 1312 October 12, 2015

Slide 3

Repetition Via Loops

• Recursion provides one way to repeat something. Often not efficient (every

call to a function requires space for local variables, and at some point you can

run out of room), nor is it always convenient (writing a function every time you

want to repeat something).

• Hence C, like most procedural languages, offers constructs called loops. All

have four basic elements (sometimes implicit).

Slide 4

Loop Elements

• Initializer — something that sets initial values for variables involved in the

repetition (iteration).

• Condition — something that determines whether repetition continues. Can be

tested at the start of each iteration (pre-test loop) or at the end (post-test

loop).

• Body — the code to repeat.

• Iterator — something that moves on to the next iteration.



CSCI 1312 October 12, 2015

Slide 5

while Loops

• Probably the simplest kind of loop. You decide where to put initializer and

iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

while (n <= 10) { /* condition */

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?

Slide 6

for Loops

• Probably the most common type of loop. Particularly useful for anything

involving counting, but can be more general. Syntax has explicit places for

initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

int n;

for (n = 1; n <= 10; ++n) {

printf("%d\n", n);

}

• Initializer happens once (at start); condition is evaluated at the start of each

iteration; iterator is executed at the end of each iteration.



CSCI 1312 October 12, 2015

Slide 7

do while Loops

• Looks very similar to while loop, but test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

do {

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

} while (n <= 10); /* condition */

Slide 8

Loop Examples

• (Next time . . . )



CSCI 1312 October 12, 2015

Slide 9

Minute Essay

• None really — sign in, unless questions about recursion?


