
CSCI 1312 November 2, 2015

Slide 1

Administrivia

• Midterms graded. Most scores very good (!).

• Sample solutions for all homeworks posted.

If you’ve turned something in, not a bad idea to have a look even if you got full

credit — some full-credit solutions seemed to me to be more complicated

than they needed to be.

If you haven’t turned in all assignments, I’m still willing to accept late

assignments for some credit if you haven’t look at the solution.

Slide 2

Why Arrays?

• Suppose you wanted to write a program to count how many times each letter

occurs in the program’s input. What would you do? Is there an obvious way to

solve this with what we’ve discussed so far?



CSCI 1312 November 2, 2015

Slide 3

Why Arrays?, Continued

• You could have a variable for how many A’s, one for how many B’s, etc., and a

huge switch construct. But how ugly . . .

• What seems to be needed is something similar to subscripted variables in

math — an array.

• Other uses abound — e.g., if working with large amounts of input, sometimes

you can process elements as you read them (e.g., our program to compute an

integer sum), but sometimes it’s necessary or at least convenient to have

them all in memory at once.

Slide 4

Arrays

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many elements of the

same type (int, float, etc.) and give a common name to all. You can

then reference an individual element via its index (similar to subscripts in

math).



CSCI 1312 November 2, 2015

Slide 5

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

old C, it had to be a constant. In newer C, it can be a variable.)

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)

Slide 6

Example — Variance

• As an example of a calculation where it’s necessary (or at least convenient) to

have all input values in memory at once, consider computing variance of

inputs, where variance of a0 · · · an−1 is defined as the average of

(ai − avg)2 (avg is the average of the ai’s).

• Unless we can be clever somehow, we can’t start computing this sum until we

have the average, and computing that requires us to read all the inputs, but

then we need to read them again, which might not be possible, so store

them . . .



CSCI 1312 November 2, 2015

Slide 7

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements

with indices 0 through n − 1. What happens if you reference element -1? n?

2n?

• Well, the compiler won’t complain. At runtime, the computer will happily

compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it’s not (i.e., it’s “out of bounds) . . .

Slide 8

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable.” Maybe it’s outside the memory your program can

access, in which case you probably get the infamous “Segmentation fault”

error message.

Almost worse is if it’s not — then what’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. (This is the essence of the buffer overflows you may hear

mentioned in connection with security problems.)

• What to do? Be careful. (Probably worth noting here that many more-recent

languages, for example Java and Python, protect you from such errors by

“throwing an exception”, which by default crashes your program, but with

information about what went wrong.)



CSCI 1312 November 2, 2015

Slide 9

Minute Essay

• How did the midterm compare to your expectations (topics, level of

difficulty, . . . ).


