CSCI 1312 November 2, 2015

Administrivia

e Midterms graded. Most scores very good (!).

e Sample solutions for all homeworks posted.
If you've turned something in, not a bad idea to have a look even if you got full
credit — some full-credit solutions seemed to me to be more complicated
Slide 1 than they needed to be.
If you haven't turned in all assignments, I'm still willing to accept late

assignments for some credit if you haven't look at the solution.

(Why Arrays?)

e Suppose you wanted to write a program to count how many times each letter
occurs in the program’s input. What would you do? Is there an obvious way to

solve this with what we've discussed so far?

Slide 2

CSCI 1312 November 2, 2015

(Why Arrays?, Continued)

e You could have a variable for how many A’s, one for how many B’s, etc., and a

huge swi t ch construct. But how ugly ...

e \What seems to be needed is something similar to subscripted variables in

math — an array.

Slide 3 e Other uses abound — e.g., if working with large amounts of input, sometimes
you can process elements as you read them (e.g., our program to compute an
integer sum), but sometimes it's necessary or at least convenient to have

them all in memory at once.

Arrays

e Previously we've talked about how to reserve space for a single

number/character and give it a name.

e Arrays extend that by allowing you to reserve space for many elements of the
same type (i nt, fl oat, etc.) and give a common name to all. You can
Slide 4 then reference an individual element via its index (similar to subscripts in

math).

CSCI 1312 November 2, 2015

Arrays in C

e Declaring an array — give its type, name, and how many elements.
Examples:
int nuns[10];
doubl e stuff[N;

Slide 5 (The second example assumes Nis declared and given a value previously. In
old C, it had to be a constant. In newer C, it can be a variable.)

e Referencing an array element — give the array name and an index (ranging
from 0 to array size minus 1). Index can be a constant or a variable. Then use
as you would any other variable. Examples:

nuns[0] = 20;
printf("%\n", nuns[0]);

(Notice that the second example passes an array element to a function. AOK!)

. J

4)

Example — Variance

e As an example of a calculation where it's necessary (or at least convenient) to
have all input values in memory at once, consider computing variance of
inputs, where variance of ag - - - a,,—1 is defined as the average of
(ai — avg)2 (avg is the average of the a;’s).

Slide 6 e Unless we can be clever somehow, we can’t start computing this sum until we
have the average, and computing that requires us to read all the inputs, but
then we need to read them again, which might not be possible, so store

them ...

CSCI 1312 November 2, 2015

Arrays in C, Continued

e \We said if you declare an array to be of size 12 you can reference elements
with indices 0 through n — 1. What happens if you reference element -1? n?
2n?

e Well, the compiler won’t complain. At runtime, the computer will happily
Slide 7 compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it's not (i.e., it's “out of bounds) ...

4)

Arrays in C, Continued

e (What happens if you try to access an array with an index that's out of
bounds?)

e “Results are unpredictable.” Maybe it’s outside the memory your program can
access, in which case you probably get the infamous “Segmentation fault”

error message.
Slide 8
Almost worse is if it's not — then what's at the computed memory address

might be some other variable in your program, which will then be
accessed/changed. (This is the essence of the buffer overflows you may hear

mentioned in connection with security problems.)

o What to do? Be careful. (Probably worth noting here that many more-recent
languages, for example Java and Python, protect you from such errors by
“throwing an exception”, which by default crashes your program, but with

information about what went wrong.)

CSCI 1312 November 2, 2015

e How did the midterm compare to your expectations (topics, level of
difficulty, .. .).

Slide 9

