
CSCI 1312 November 9, 2015

Slide 1

Administrivia

• Reminder: Quiz 3 Wednesday. Likely topic arrays.

• Homework 5 was to be due Wednesday. I am adding another problem and

moving the due date to next Monday. (I’ll send mail when the second problem

is ready to work on.)

Slide 2

Sorting and Searching — Executive-Level Summary

• Both are nice examples of problems that can be solved in various different

ways (different “algorithms”).

• Useful to know details of at least one, but in practice likely that you would use

a library function.



CSCI 1312 November 9, 2015

Slide 3

“Order of Magnitude” of Functions — Executive-Level
Summary

• Idea here is to categorize algorithms by how execution time (or other

measures, e.g., amount of memory required) scales with problem size, for

large problems.

• Can help rule out algorithms that would not be practical/feasible for large

problems.

A famous(?) example — “traveling salesperson problem”, for which all known

algorithms require considering, for N cities, all possible permutations, making

them O(N !). Not reasonable! (Worth noting that there apparently are

practical approximations. Still!)

Slide 4

Text Data — Single Characters

• We have not talked much about it, but C does have a data type for text data

— char. Big enough to represent ASCII (7-bit encoding) and other

about-equal-size encodings (e.g., EBCDIC). Newer standards also provide

support for “wide characters”.

• Can use scanf and printf, but simpler and more efficient to use

getchar() and putchar(). Worth noting that the input functions read

all input characters, including whitespace and end-of-line.

• Many standard-library functions for working with char, e.g., isspace.



CSCI 1312 November 9, 2015

Slide 5

Text Data — Strings

• Most more-recent languages have nice ways of working with “strings” of text

data that hide details and provide nice functionality.

• C, in contrast, provides a bare-bones version, in which text strings are

represented as arrays of char, with an end-of-string character (’\0’) that

allows an array of fixed size to store strings of different sizes.

Simple but subject to all the perils of arrays!

• C standard library includes functions for working with (its version of) strings,

but most must be used with care.

Slide 6

Text Strings — Output

• Can use printf with %s.

• Can also use puts (which adds a newline).



CSCI 1312 November 9, 2015

Slide 7

Text Strings — Input

• Surprisingly (or not, given C’s minimalist implementation of arrays), no nice

way to do this!

• Can use scanf, but no nice/general way to be sure you don’t overflow array,

and getting something that includes whitespace may be tricky.

• Can get a whole line with fgets, but must provide a fixed-size array (so,

what size?) and deal with newlines.

gets looks nice but observe what its man page says(!).

• Consider processing data character by character, or using command-line

arguments (next time?).

Slide 8

Minute Essay

• None really — sign in.


