
CSCI 1312 November 16, 2015

Slide 1

Administrivia

• Reminder: Homework 5 due today.

• Remaining quizzes . . . — I propose that we have five not six (I would still drop

the lowest one) and that we schedule the first one for next Monday, the other

the following week.

Slide 2

Text Data — Review

• We talked about how numbers (integer and real) are represented using ones

and zeros. How about text? Have to represent it also in terms of ones and

zeros. Usual way is to come up with some way of “encoding” single

characters, then some way of assembling them into “strings”.

• So C, like most programming languages, has a data type for single

characters, namely char. C’s is somewhat more limited than that of many

more-recent languages — can represent ASCII values (Roman alphabet,

digits, some punctuation, a few “special characters” such as newline). Recent

versions also support “wide characters” (type wchar t).

• C then represents “strings” as arrays of char.

CSCI 1312 November 16, 2015

Slide 3

Text Data — Single Characters

• char is considered an integer type and can be worked with as such. Notice

that while these days ASCII is by far the most common encoding, standard

doesn’t require that and there are other possibilities.

• Many library functions for working with single characters (e.g., isalpha).

• Can read in / print single characters with scanf or printf using %c. Or

can use getchar, putchar. Notice that getchar returns an int.

Why? so it can return special value EOF when no more input.

Slide 4

Text Data — “Strings”

• Types for representing numbers (integer and floating-point) typically of fixed

size. That doesn’t work well for strings. What to do instead?

• C, as usual like most programming languages, provides support for

varying-length “strings” of characters — but being C what is provided is

somewhat primitive:

• A C “string” is a sequence of characters ending with special “null character”

(\0), stored in an array of char.

CSCI 1312 November 16, 2015

Slide 5

Text Data — Strings, Continued

• C library contains functions for working with strings, but be aware that they

must be used with caution — many do not check that requested operation

does not overflow output array, and most assume that operands are properly

“null-terminated”.

• Can read in / print strings with scanf or printf using %s. Notice

however that scanf not only disallows embedded spaces but also can

overflow array unless care is taken. Notice — with this type no need for &

before variable name.

• Can also use puts to write a string, fgets to read “a line” of text. Latter is

reasonably safe but puts end-of-line in array.

Slide 6

Command-Line Arguments

• Up to now any input from user has come from “standard input” (keyboard, or

file via I/O redirection).

• Another option is “command-line arguments” — e.g.,

a.out abcd 1234

calls program a.out with two of them (abcd and 1234).

(Compare to calling, e.g., gcc.)

• Because getting text input in C is (in my opinion) so full of pitfalls, I think this is

a good way to get some text information, such as filenames.

CSCI 1312 November 16, 2015

Slide 7

Command-Line Arguments, Continued

• Most programming languages provide some way to access command-line

arguments, distinct from reading from standard input.

• In C, access requires a different declaration for main:

int main(int argc, char * argv[]) { }

where argc is the number of arguments, plus one, and argv is an array of

strings containing the arguments. We could write a simple program to echo

these arguments . . .

Slide 8

Minute Essay

• None — quiz.

