
CSCI 1312 November 20, 2015

Slide 1

Administrivia

• Reminder: Quiz 4 Monday. (If you cannot reasonably be present then, talk to

me about whether it’s possible to make up this quiz later.) Likely topics include

material from this week and the little we did about sorting and “order of

magnitude” of algorithms. (So, review how the three sorting algorithms in the

textbook work, focusing on how they move data around rather than on code.)

• Next homework still “in work” . . .

Slide 2

Pointers Revisited

• Every time you call scanf, you pass it at least one parameter of the form

&x. What does that mean? Also, when you look at man pages for some

functions, they show function declarations with parameters of the form type *.

What does that mean?

• To explain, we need one more kind of variable — pointers. A pointer, as its

name suggests, points to something — namely, a location in memory.

Typically a pointer “points to” a variable.

CSCI 1312 November 20, 2015

Slide 3

Pointers in C

• Many programming languages provide something like pointers. Unlike some

more-recent languages, C allows you to have both pointer variables and

non-pointer variables.

• To a first approximation, C pointers are just memory addresses — i.e.,

numbers — but they are declared to point to variables (or data) of a particular

type. Example:

int * pointer to int;

double * pointer to double;

Slide 4

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

CSCI 1312 November 20, 2015

Slide 5

Pass By Reference, Sort Of — Review(?)

• Functions can only explicitly return a single value — a significant limitation.

Pointers provide a way to get around that: By passing a pointer to something,

rather than the thing itself, can in effect have a function return multiple things.

• To make this work, declare the function’s parameters as pointers, and pass

addresses of variables rather than variables. (This is how scanf does what

it does, and why you need the &.)

• (The “sort of” in the slide title is because this is not true pass by reference as

in, e.g., C++, but the effect is the same.)

• (Example.)

Slide 6

A Little About Strings in C — Review(?)

• Most programming languages provide a way to represent text (sequence of

characters). C differs from some others you might use in providing only a very

simple way that exposes details of the implementation.

• In C, a (character) string is an array of characters, with a null character

(written ’\0’) at the end. So to declare a variable to hold a string, you might

write

char mystring[100];

• Character literals written with single quotes, string literals with double quotes.

CSCI 1312 November 20, 2015

Slide 7

Strings in C, Continued

• To print a string, can use %s with printf, or puts.

• To read a string from standard input or a file, can use scanf with %s — but

this is risky unless you limit how many characters are read! May be better to

read a whole line with fgets, but that also has a downside (must deal with

end-of-line character).

Slide 8

Pointers, Arrays, and Pointer Arithmetic in C

• C treats pointers and arrays as interchangeable in most respects. (This is why

it works that many functions whose parameters are supposed to be strings —

arrays of characters — declare them as pointers. Many many examples . . .)

• C also permits doing some arithmetic operations on pointers (addition and

subtraction). Adding n to a pointer that points to type advances it n times the

size of type.

Example: If a is an array of ints, a[2] and *(a+2) are equivalent. (So

we could write loops over arrays using pointers. Once upon a time that was

sometimes more efficient. With current compilers, probably not so, so use

whatever is most readable.)

CSCI 1312 November 20, 2015

Slide 9

Working With Text Strings in C

• Nany library functions useful for working with strings.

• Significant problem in working with strings — no natural maximum size, so

must decide how big to make the array of characters used to hold one — and

then be sure you don’t try to put in too many characters.

• Some library functions let you say how big the array is; some don’t. Always be

as careful as you can when working with strings; trying to store a string in an

array not big enough is a source of “buffer overflows”, which can lead to

program crashes and more subtle problems, including security risks.

Slide 10

Working With Text Strings in C, Continued

• Many library functions for working with strings use/return pointers. Pointer

arithmetic allows for some interesting uses of these functions.

• (Examples as time permits.)

CSCI 1312 November 20, 2015

Slide 11

Minute Essay

• Questions? otherwise just sign in.

