
CSCI 1312 December 2, 2015

Slide 1

Administrivia

• Homework 6 deadline extended to Friday. Possibly one more easier/shorter

homework to be assigned Friday.

Slide 2

Pointers in C — Review/Recap

• Many programming languages provide something like pointers. Unlike some

more-recent languages, C allows you to have both pointer variables and

non-pointer variables.

• To a first approximation, C pointers are just memory addresses — i.e.,

numbers — but they are declared to point to variables (or data) of a particular

type. Example:

int * pointer to int;

double * pointer to double;



CSCI 1312 December 2, 2015

Slide 3

Pointers in C — Operators and Arithmetic

• & gets a pointer to something in memory.

• * “dereferences” a pointer.

• Can display value of pointer using printf with %p and “casting” pointer to

type void*. Sometimes interesting in exploring how variables are laid out in

memory (implementation-dependent).

• C also permits doing some arithmetic operations on pointers (addition and

subtraction). Adding n to a pointer that points to type advances it n times the

size of type. Can also compare pointers, but probably best not to rely on

anything but == and !=.

Slide 4

Converting Text Strings to Numeric Types

• You know about scanf (and fscanf for converting text input to numeric

types. But what if you have a text string (e.g., a command-line argument)?

• Functions strtol and strtod can help. atoi and atof can also be

used but do not provide any kind of error checking.

Usage example (to convert the first command-line argument, if the second

parameter to main is argv):

char *endptr; int n = strtol(argv[1],

&endptr, 10); if (*endptr != ’\0’) /* error

*/



CSCI 1312 December 2, 2015

Slide 5

Dynamic Memory and C

• With the old C standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays help with that, but don’t solve all related problems:

In most implementations, space is obtained for them on “the stack”, an area of

memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).

Slide 6

Dynamic Memory and C

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(How this helps — most implementations differentiate between two areas of

memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• Dynamic memory allocation also needed to build “linked” data structures (next

time, briefly?).



CSCI 1312 December 2, 2015

Slide 7

Dynamic Memory and C, Continued

• To request memory, use malloc.

• To return it to the system, use free. (For short simple programs you can

probably get away with skipping free since the operating system will

probably clean up after you, but for longer and more complicated programs,

you should clean up when you can, or eventually you may run out of memory.)

Slide 8

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *
20);

or better:

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(some text)

* 20);

and then

free(nums); free(some text);

• Book recommends “casting” value returned by malloc. Other references



CSCI 1312 December 2, 2015

Slide 9

recommend the opposite! But you should check the value — if NULL, system

was not able to get that much memory.

Slide 10

Multidimensional Arrays Revisited

• Multidimensional arrays are easy to declare:

int matrix[100][200];

• The messy part comes when you try to pass one of these to a function,

though as with 1D arrays, VLAs do help. (Without them, there’s really no way

to specify at runtime all dimensions. The old-C way is to fix and specify all but

the first dimension — e.g., for a 2D array, fix the number of columns.)

• Another way is to represent them as “arrays of arrays” — i.e., arrays of

pointers. Could do this as what textbook calls “ragged arrays” or by building

list of pointers into one big 1D array.



CSCI 1312 December 2, 2015

Slide 11

Minute Essay

• None — quiz.


