
CSCI 1312 December 4, 2015

Slide 1

Administrivia

• Readings column on “Lecture topics and assignments” page should be

complete now. Notice that I added section 9.3 to the other readings from

chapter 9 — shouldn’t have left it out.

(About the reading — I say best to use it as a supplement to class, so okay to

skim, and to not read all examples carefully.)

• Sample solutions to all quizzes online. Scores for Quiz 4 low overall.

• Sample solutions for Homeworks 1 through 5 posted. Grading of Homework 5

in progress.

• Reminder: Homework 6 due . . . by popular demand, Monday.

• Final will cover up through pointers but not beyond. Maybe one more

homework, to be due after the final. Possibly optional / extra credit.

Slide 2

Multidimensional Arrays Revisited

• Multidimensional arrays are easy to declare:

int matrix[100][200];

• The messy part comes when you try to pass one of these to a function,

though as with 1D arrays, VLAs do help. (Without them, there’s really no way

to specify at runtime all dimensions. The old-C way is to fix and specify all but

the first dimension — e.g., for a 2D array, fix the number of columns.)

• Also as with 1D arrays, though, fixed-size arrays and VLAs have limitations,

so may need to explicitly allocate at runtime using malloc.



CSCI 1312 December 4, 2015

Slide 3

Dynamically-Allocated Multidimensional Arrays

• One way — “arrays of arrays”, i.e., i.e., arrays of pointers. Could do this as

what textbook calls “ragged arrays” or by building list of pointers into one big

1D array.

• Another way — store data in a 1D array and write functions/macros to convert

multiple indices into a single index.

• (Examples to be on Web soon.)

Slide 4

User-Defined Data Types

• Can do a lot just with single variables and arrays (as I know from a long-ago

job — software company, complex financial-analysis program, written in

old-style FORTRAN with only arrays — !).

• But many things are easier and/or more readable if you can define additional

types.

• More-modern languages often provide extensive libraries of data types.

C doesn’t, but provides tools with which users can write their own (libraries.)



CSCI 1312 December 4, 2015

Slide 5

User-Defined Data Types in C — Constructs

• typedef — give an existing type a new name. A little more today.

• enum — “enumerated data type”. Can make code more readable, but really

a thin veneer over integers, and language-level support is limited. Read

textbook discussion if interested.

• struct — provide a way to define something that groups data of possibly

different types. A little more today.

• union — provide a way to define different view of the same data. Useful in

some circumstances but to be used with caution. Read textbook discussion if

interested.

Slide 6

Defining New Types with typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef DATA VALUE double;

• Can make code more readable, or allow you to isolate things that might be

different on different platforms (e.g., whether to use int or long in some

application) in a single place.



CSCI 1312 December 4, 2015

Slide 7

“Structures” — struct

• More complex (interesting?) types can be defined with struct. Lets you

define a new type as a collection of other types. (If you later learn an

object-oriented language, the “classes” it lets you define are similar but with

many more features.)

Simple example — 2D point consisting of (x,y) coordinates. Yes you could

use an array of size 2 but this gives a way to reference element by name

rather than index.

• Two versions of syntax (next slide) . . .

• (Examples to be on Web soon.)

Slide 8

Defining structs

• One syntax uses typedef:

typedef struct {

double x;

double y;

} point2D;

point2D some_point;

• Another way doesn’t:

struct point2D {

double x;

double y;

};

struct point2D some_point;



CSCI 1312 December 4, 2015

Slide 9

Working with structs

• Can initialize by putting initial values in curly braces.

• Can assign one struct to another of the same type with assignment operator.

• Can access individual “fields” with their names:

. if what you have is a struct itself:

struct point2D some_point;

some_point.x = 10.1;

some_point.y = 20.1;

-> if what you have is a pointer to a struct:

struct point2D * some_point_ptr = &some_point;

some_point_ptr->x = 10.1;

some_point_ptr->y = 20.1;

Slide 10

“Linked” Data Structures — Executive-Level Summary

• Many situations in which it’s helpful to be able to represent data using some

structure that consists of individual elements linked in some way — as a list, a

tree, a more-general graph (in the math sense), etc.

• Many/most programming languages support this. Executive-level summary —

you define something that represents one element, with pointers/references

to other elements. In C, you would do this by defining a struct and writing

functions to build the desired structure from these elements.



CSCI 1312 December 4, 2015

Slide 11

Example — “Linked Lists”

• Arrays are good for working with lists of elements, but have some significant

limitations, namely that it’s not easy to insert/remove elements, or to change

size.

• “Linked lists” avoid such problems, but with some costs — code is more

complex, memory requirements per element are larger, access to elements

by index is much less efficient.

• To get a sense of how they work, review illustrations in textbook.

Slide 12

Minute Essay

• What did we not talk about, or not talk about enough, that you can imagine

needing in order to write code for a problem you actually want to solve by

programming?


