CSCI 1312 (Introduction to Programming for Engineering), Fall
2016

Homework 4

Credit: 35 points.

1 Reading

Be sure you have read (or at least skimmed) the assigned readings from chapter 4, and section 9
(about recursion) from chapter 6.

2 Honor Code Statement

Please include with each part of the assignment the Honor Code pledge or just the word “pledged”,
plus one or more of the following about collaboration and help (as many as apply).! Text in italics
is explanatory or something for you to fill in. For written assignments, it should go right after your
name and the assignment number; for programming assignments, it should go in comments at the
start of your program.

e This assignment is entirely my own work.

e This assignment is entirely my own work, except for portions I got from the assignment itself
(some programming assignments include “starter code”) or sample programs for the course
(from which you can borrow freely — that’s what they’re for).

e | worked with names of other students on this assignment.

e I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc.

e I got significant help from outside source — a book other than the textbook (give title and
author), a Web site (give its URL), etc.. (“Significant” here means more than just a little
assistance with tools — you don’t need to tell me that you looked up an error message on the
Web, but if you found an algorithm or a code sketch, tell me about that.)

e I provided significant help to names of students on this assignment. (“Significant” here means
more than just a little assistance with tools — you don’t need to tell me about helping other
students decipher compiler error messages, but beyond that, do tell me.)

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.
trinity.edu with each file as an attachment. Please use a subject line that mentions the course
and the assignment (e.g., “csci 1312 hw 4”7 or “CS1 hw 4”). You can develop your programs on

1Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is
the ACM’s Special Interest Group on CS Education.

CSCI 1312 Homework 4 Fall 2016

any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (15 points) Write a C program that defines and tests a function for converting Fahrenheit
temperatures to Celsius. (You should be able to reuse your code from Homework 2, perhaps
with some slight modifications.) Your program should include three functions:

e A conversion function to perform the actual conversion, declared as follows:
double f_to_c(double f);

where the single parameter £ represents a Fahrenheit temperature and the return value
represents the equivalent Celsius temperature. (So, for example, £ to_c(32.0) should
evaluate to 0.0.0

e A convert-and-print function declared as follows:
void convert_and print(double f);

that calls the conversion function and prints its input and output nicely. So for example
convert_and print (32.0); might print

32 degrees Fahrenheit is O degrees Celsius

(Don’t worry too much about printing appropriate numbers of digits after the decimal
point; you can do whatever is easy, or read the man page or other documentation for
printf to find out how to get more control.)

e A main function that calls convert_and _print () at least four times with different inputs
that you think will illustrate that the conversion is working right. (So this program is
self-contained and doesn’t prompt the user for anything!)

NOTE that the point of this problem is for you to practice defining and using functions,
so you will not get full credit unless your program includes functions as described.

2. (20 points) Write a C program that asks the user for two non-negative integers, call them
a and b, not both zero, and computes and prints ged(a,b), the greatest common divisor of
a and b, using a recursive version of Euclid’s algorithm. Print an error message if what was
entered is not two integers, or either input is negative, or both are zero.

Euclid’s algorithm can be described recursively thus: For non-negative integers a and b, not
both zero, with a > b,

a iftb=20
ged(b,a mod b) otherwise

ged(a, b) = {
where a mod b is the remainder when a is divided by b. (You don’t actually have to understand
this algorithm to turn it into code, but if you want to and don’t, a Web search will likely turn
up some good explanations of how/why it works.)

NOTE that the point of this problem is for you to practice defining and using a recursive
function, so you will not get full credit unless you do. I recommend putting all the error
checking in the main program and having a recursive function declared as

int gcd(int a, int b);

