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Administrivia

• As noted in e-mail, I put a link in TLEARN to the course Web page, so you

can find it that way if that’s easier to remember.

• “Useful links” on course Web site has links to information about UNIX/Linux

commands, etc.

• For minute essays, put “minute essay” and the course name or number in the

subject line. (Most class days I teach multiple courses, so this helps me

quickly and reliably pick out the minute essays for each one.)

You can ask me anything course-related, but if your question needs a quick

reply, please put “urgent” in the subject line.
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Minute Essay From Last Lecture

• Several people had used a command line before, but not all.

• “Lots of commands to learn”. If you have trouble remembering the commands

(which you likely will at first!): In times past beginners got paper “cheat

sheets” of commonly-used commands. Maybe make yourself an electronic

equivalent?

• “Seems a lot like Ubuntu.” For good reason :-) (both Linux distributions).

• “Have to do something explicit to hide files from others.” You shouldn’t —

default should be to create files readable/writable only by you — but right now

that works correctly for remote login but not for terminal windows. Sysadmin

problem and I will report back.
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Review — Commands For Working With Files and

Directories

• cat, less to display files.

• cp, mv, rm to copy, move/rename, remove files. -i to prompt (rm) or warn

about overwrites (others). (Why isn’t this the default behavior? System was

designed to be expert-friendly and so assumes you meant what you said,

maybe.)

• mkdir, rmdir to create, remove directories.

• cd to move between directories. ls to display files in directory (-l for long

format, -a to also show hidden files.)
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A Little About Shell Customization

• Can be very useful to customize your shell a bit — e.g., to always use those

-i flags.

• To do this, edit file .bashrc . . .

No. First save old file (cp .bashrc save.bashrc), so if you really

mess up you can get the old one back.

Now open .bashrc and add lines such as

alias cp=’cp -i’

alias mv=’mv -i’

• Save, quit, open new terminal window, and if you type which cp you

should see your alias. (If something goes wrong, in old terminal window say

cp save.bashrc .bashrc to restore.)
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Other Useful Commands

• man command to get information (“man page”) about command Also

displays information about functions.

Sometimes there are multiple man pages with the same name (e.g., a

command and a function); man -a to get all of them (q to move from one to

the next).

man -k keyword to look for commands that might have something to do

with keyword.

• man uses less to page through documentation. Up and down arrows work

to move through file. / searches for text in file. q exits. h shows list of other

options.
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Text Editors — Review

• “Text editor” is a program for creating and editing plain text (as opposed to,

e.g., a word processor).

• I use and will show in this class vim. Not especially beginner-friendly but

(IMO!) “expert”-friendly, and good for working with program source code.

• Start vim with vim filename. Can only enter text in “insert mode”. Start with

i or a. Exit with ESC.
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vim Tips

• Biggest hurdle may be the notion of modes. (But you already know about this,

sort of? Word processors have insert/overwrite modes.)

• Cut/copy/paste basics:

dd cuts a whole line. yy copies a whole line.

p pastes after the current line. P pastes before the current line.

• Search by typing /, text to search for, Enter. Repeat search with n.

Search-and-replace using this, cw, and .
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More vim Tips

• :help brings up online help. :help visual-mode describes one

feature you may like.

• u to undo. :w (“write”) to save. :q to exit. :q! to exit without saving.
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vim Tips — Errors/Mistakes

• If you type just q rather than :q, vim thinks you want to record a macro.

Screen will show “recording”. Press q to make it stop.

• If you type q: rather than :q, vim thinks you want it to display a history of

commands and shows them to you in a subwindow. Type :q to make that go

away.

• If you want to copy-and-paste text using window manager, :set paste

first to avoid annoying indentation behavior. :set nopaste after.
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vim Tips — Errors/Mistakes, Continued

• If you just close the terminal window when running vim, that “crashes” vim.

So what? Well . . .

• vim creates a hidden file that saves information that can help with recovery if

it crashes. Deleted on normal exit, otherwise not. And then next time you start

vim on that file — screenful of messages starting ”ATTENTION” and ”Found

a swap file” and finally asking you whether you want to open it anyway or

what. If you respond R vim will try to recover unsaved changes; otherwise

not. To actually delete this hidden file, so you don’t get that same screenful of

messages next time, respond D.
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Input/Output Redirection in UNIX/Linux

• A key feature of command-line environments, one that provides a lot of power

— I/O redirection. Idea is that programs can get input from different sources

(keyboard, file, “pipe”) and write output to different destinations (“screen”, file,

“pipe”), all without changing the program. Example:

myprogram < test1-in > test1-out

to have myprogram get its input from test1-in rather than the

keyboard, and put its output in test1-out rather than showing it on the

screen. (Overwrites test1-out. To append instead, use >>

test1-out.)

This is (part of) how I grade programming!

• “Pipes” connect output of one program with input of another. A common “use

case” is to page through long output by piping it into less — e.g.

ps aux | less
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A First Program in C

• As you read sections of the textbook you may want to try running the

programs yourself. More about all of this soon, but today let’s do a “hello

world” program . . .

• (“Hello world” program? Yes. Traditional in some circles to have one’s first

program in a language print “hello, world” to “the screen”. Origins of this

tradition — inventors of C.)
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A First Program in C, Continued

• First write the program using a text editor (e.g., vim) and save it with a name

ending in .c (say hello.c). (See the “sample programs” Web page for

what it looks like.)

• Next, compile the program (turn it into something the computer can execute).

Simplest command for that:

gcc hello.c

If no syntax or other errors, produces an “executable” file a.out.

• Run the program by typing a.out at the command prompt. (If that doesn’t

work, try ./a.out.)
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Minute Essay

• Any questions so far? (We’ll start talking soon about what all those lines in

the program mean.)


