
CSCI 1312 August 31, 2016

Slide 1

Administrivia

• As noted in e-mail, I put a link in TLEARN to the course Web page, so you

can find it that way if that’s easier to remember.

• “Useful links” on course Web site has links to information about UNIX/Linux

commands, etc.

• For minute essays, put “minute essay” and the course name or number in the

subject line. (Most class days I teach multiple courses, so this helps me

quickly and reliably pick out the minute essays for each one.)

You can ask me anything course-related, but if your question needs a quick

reply, please put “urgent” in the subject line.

Slide 2

Minute Essay From Last Lecture

• Several people had used a command line before, but not all.

• “Lots of commands to learn”. If you have trouble remembering the commands

(which you likely will at first!): In times past beginners got paper “cheat

sheets” of commonly-used commands. Maybe make yourself an electronic

equivalent?

• “Seems a lot like Ubuntu.” For good reason :-) (both Linux distributions).

• “Have to do something explicit to hide files from others.” You shouldn’t —

default should be to create files readable/writable only by you — but right now

that works correctly for remote login but not for terminal windows. Sysadmin

problem and I will report back.



CSCI 1312 August 31, 2016

Slide 3

Review — Commands For Working With Files and

Directories

• cat, less to display files.

• cp, mv, rm to copy, move/rename, remove files. -i to prompt (rm) or warn

about overwrites (others). (Why isn’t this the default behavior? System was

designed to be expert-friendly and so assumes you meant what you said,

maybe.)

• mkdir, rmdir to create, remove directories.

• cd to move between directories. ls to display files in directory (-l for long

format, -a to also show hidden files.)

Slide 4

A Little About Shell Customization

• Can be very useful to customize your shell a bit — e.g., to always use those

-i flags.

• To do this, edit file .bashrc . . .

No. First save old file (cp .bashrc save.bashrc), so if you really

mess up you can get the old one back.

Now open .bashrc and add lines such as

alias cp=’cp -i’

alias mv=’mv -i’

• Save, quit, open new terminal window, and if you type which cp you

should see your alias. (If something goes wrong, in old terminal window say

cp save.bashrc .bashrc to restore.)



CSCI 1312 August 31, 2016

Slide 5

Other Useful Commands

• man command to get information (“man page”) about command Also

displays information about functions.

Sometimes there are multiple man pages with the same name (e.g., a

command and a function); man -a to get all of them (q to move from one to

the next).

man -k keyword to look for commands that might have something to do

with keyword.

• man uses less to page through documentation. Up and down arrows work

to move through file. / searches for text in file. q exits. h shows list of other

options.

Slide 6

Text Editors — Review

• “Text editor” is a program for creating and editing plain text (as opposed to,

e.g., a word processor).

• I use and will show in this class vim. Not especially beginner-friendly but

(IMO!) “expert”-friendly, and good for working with program source code.

• Start vim with vim filename. Can only enter text in “insert mode”. Start with

i or a. Exit with ESC.



CSCI 1312 August 31, 2016

Slide 7

vim Tips

• Biggest hurdle may be the notion of modes. (But you already know about this,

sort of? Word processors have insert/overwrite modes.)

• Cut/copy/paste basics:

dd cuts a whole line. yy copies a whole line.

p pastes after the current line. P pastes before the current line.

• Search by typing /, text to search for, Enter. Repeat search with n.

Search-and-replace using this, cw, and .

Slide 8

More vim Tips

• :help brings up online help. :help visual-mode describes one

feature you may like.

• u to undo. :w (“write”) to save. :q to exit. :q! to exit without saving.



CSCI 1312 August 31, 2016

Slide 9

vim Tips — Errors/Mistakes

• If you type just q rather than :q, vim thinks you want to record a macro.

Screen will show “recording”. Press q to make it stop.

• If you type q: rather than :q, vim thinks you want it to display a history of

commands and shows them to you in a subwindow. Type :q to make that go

away.

• If you want to copy-and-paste text using window manager, :set paste

first to avoid annoying indentation behavior. :set nopaste after.

Slide 10

vim Tips — Errors/Mistakes, Continued

• If you just close the terminal window when running vim, that “crashes” vim.

So what? Well . . .

• vim creates a hidden file that saves information that can help with recovery if

it crashes. Deleted on normal exit, otherwise not. And then next time you start

vim on that file — screenful of messages starting ”ATTENTION” and ”Found

a swap file” and finally asking you whether you want to open it anyway or

what. If you respond R vim will try to recover unsaved changes; otherwise

not. To actually delete this hidden file, so you don’t get that same screenful of

messages next time, respond D.



CSCI 1312 August 31, 2016

Slide 11

Input/Output Redirection in UNIX/Linux

• A key feature of command-line environments, one that provides a lot of power

— I/O redirection. Idea is that programs can get input from different sources

(keyboard, file, “pipe”) and write output to different destinations (“screen”, file,

“pipe”), all without changing the program. Example:

myprogram < test1-in > test1-out

to have myprogram get its input from test1-in rather than the

keyboard, and put its output in test1-out rather than showing it on the

screen. (Overwrites test1-out. To append instead, use >>

test1-out.)

This is (part of) how I grade programming!

• “Pipes” connect output of one program with input of another. A common “use

case” is to page through long output by piping it into less — e.g.

ps aux | less

Slide 12

A First Program in C

• As you read sections of the textbook you may want to try running the

programs yourself. More about all of this soon, but today let’s do a “hello

world” program . . .

• (“Hello world” program? Yes. Traditional in some circles to have one’s first

program in a language print “hello, world” to “the screen”. Origins of this

tradition — inventors of C.)



CSCI 1312 August 31, 2016

Slide 13

A First Program in C, Continued

• First write the program using a text editor (e.g., vim) and save it with a name

ending in .c (say hello.c). (See the “sample programs” Web page for

what it looks like.)

• Next, compile the program (turn it into something the computer can execute).

Simplest command for that:

gcc hello.c

If no syntax or other errors, produces an “executable” file a.out.

• Run the program by typing a.out at the command prompt. (If that doesn’t

work, try ./a.out.)

Slide 14

Minute Essay

• Any questions so far? (We’ll start talking soon about what all those lines in

the program mean.)


