
CSCI 1312 September 12, 2016

Slide 1

Administrivia

• Homework 1 grades e-mailed earlier today. (This is how you will get feedback

on programming assignments.)

• Reminder: Homework 2 due Wednesday.

• First quiz next Monday. About 10 minutes, end of class, “open book / open

notes” (meaning access to textbook, your notes, anything on the course Web

site, nothing else). Topics include anything we cover up through next Monday

(so, C programming as covered so far, material about base 2 and how used to

represent integers in computers). Meant to be not stressful and not

something you need to study for, beyond a quick review.

Slide 2

Minute Essay From Last Lecture

• (Everyone got it right!)

CSCI 1312 September 12, 2016

Slide 3

Text Editors and Other Tools, Revisited

• Good news from what people turned in for Homework 1 is that most people

seemed willing to give these tools a chance. Admittedly not novice-friendly,

but (I think!) expert-friendly.

(My suggestion: From time to time, figure out one or two things that really bug

you — e.g., “I don’t know how to copy and paste” — and read documentation,

or ask, until you find a solution. Add that to your “bag of tricks” . . . “Lather,

rinse, repeat.”?)

• If you like having something with a menu bar, etc., you might try gvim,

though it won’t work from a remote login.

• To turn in your homework from a remote session, consider using the script on

the “sample programs” page.

Slide 4

C and Representing Numbers — Integers

• Computer hardware typically represents integers as a fixed number of binary

digits, using “two’s complement” idea to allow for representing negative

numbers.

• C, like many (but not all!) programming languages bases its notion of integer

data on this, but also has a notion of different types with different sizes.

• Unlike many more-recent languages, C defines for each type a minimum

range rather than a definite size. Intent is to allow efficient implementation on

a wide range of platforms, but means some care must be taken if you want

portability.

CSCI 1312 September 12, 2016

Slide 5

C and Representing Numbers — Real Numbers

• Hardware also typically supports “floating-point” numbers, with a

representation based on a base-2 version of scientific notation. This allows

representing not only fractional quantities but also allows representing larger

numbers than would be possible with fixed-length integers. Notice that only

fractions that can be written with a denominator that’s a power of two can be

represented exactly.

• Again C goes along with this and provides different “sizes” (float and

double). As with integers, exact sizes not specified, only minimum criteria.

Slide 6

Text Data

• Remember that computers represent everything using ones and zeros. How

do we then get text? well, we have to come up with some way of “encoding”

text characters as fixed-length sequences of ones and zeros — i.e., as

small(ish) numbers.

• (To be continued later in the semester.)

CSCI 1312 September 12, 2016

Slide 7

Conditional Execution

• So far all our programs have executed the same statements every time, just

maybe with different numbers.

• Often, though, we want to be able to do different things in different

circumstances — for example, print an error message and stop if the input

values don’t make sense (such as a negative number for the program to make

change).

• So, C (like most languages) provides some constructs for conditional

execution. Before we talk about them, we need . . .

Slide 8

Boolean Expressions

• A Boolean value is either true or false; a Boolean expression is something

that evaluates to true or false.

• We can make simple examples in C using familiar math comparison

operators. Examples:

– x > 10

– y <= 5

– x == y (Note the use of == and not =!)

CSCI 1312 September 12, 2016

Slide 9

Boolean Expressions, Continued

• Boolean algebra defines some operators on these values; the most important

for us are written in C as

– ! — “not”, true if the operand is false.

– && — “and”, true if both operands are true.

– || — “or”, true if either operand is true (or both are).

• Can use these to build up complex expressions. As with arithmetic

expressions, use parentheses when in doubt. Examples:

– (x >= 0) && (x <= 10)

– !(x == y) (though we could also just write x != y).

Slide 10

Boolean Expressions in C

• Although there are only two Boolean values, C represents them as ints,

with 0 meaning true and anything else meaning false. (Usually you don’t care

about this, but it can be good to know.)

• This means that the compiler will accept both x == y and x = y, but

they mean different things. Very common mistake (and not just for

beginners!). Compiler will often warn you about this (though you may need to

use that -Wall flag).

CSCI 1312 September 12, 2016

Slide 11

Conditional Execution in C — if/else

• To execute a statement if an expression evaluates to true, use if:

if (x > 0)

printf("greater than zero\n");

• To execute one statement if an expression is true, another if it’s false, use if

and else:

if (x > 0)

printf("greater than zero\n");

else

printf("not greater than zero\n");

Slide 12

if/else, Continued

• To execute a group (“block”) of statements rather than just a single statement,

use curly braces for grouping:

if (x > 0) {

printf("greater than zero\n");

printf("and that is good\n");

}

else {

printf("not greater than zero\n");

printf("and that is bad\n");

}

• What happens if you forget the braces? The program may still compile and

run, but it probably won’t do what you meant.

CSCI 1312 September 12, 2016

Slide 13

if/else, Continued

• Several styles for where to put the curly braces. Which is best? Some people

care; I say pick one that’s readable (to humans) and stick with it.

• (Remember that you’re writing for “two audiences” — compiler an humans.)

Slide 14

Conditional Execution, Continued

• What if more than two? We could “nest” if/else constructs, e.g.,

if (x < 0) {

printf("less than\n");

}

else {

if (x > 0) {

printf("greater than\n");

}

else {

printf("equal\n");

}

}

• But this gets ugly fairly quickly. So . . .

CSCI 1312 September 12, 2016

Slide 15

Conditional Execution, Continued

• Better:

if (x < 0) {

printf("less than\n");

}

else if (x > 0) {

printf("greater than\n");

}

else {

printf("equal\n");

}

• Can have as many cases as we need; can omit else if not needed.

Slide 16

Conditional Execution, Continued

• Sometimes we can go further, though. If all of the conditions are of the form

integer expression == value

then we can use the switch construct. Notice that characters (char)

count as integers in this context.

• Example (similar to calculator example in textbook) on next slide.

CSCI 1312 September 12, 2016

Slide 17

Conditional Execution, Continued

• char menu_pick; /* should be one of ’+’, ’-’ */

/* */

switch (menu_pick) {

case ’+’:

result = input1 + input2;

break;

case ’-’:

result = input1 + input2;

break;

default:

result = 0;

printf("operator not recognized\n");

}

Slide 18

Simple I/O, Revisited

• We can now do simple error-checking that scanf did what we asked.

C-idiomatic way looks like this simple example:

if (scanf("%d", &x) == 1)

/* okay */

else

/* error */

CSCI 1312 September 12, 2016

Slide 19

Simple I/O, Revisited

• Doing a really good job with interactive input is surprisingly tricky — what

constitutes an error, how do you prompt user to try again.

• So for this class we’ll focus on some simple safety checks: if input should be

numeric it is, values make sense for the program (e.g., input to “count

change” program is not negative, etc.).

• For this class it’s usually best to just bail out on bad input, rather than retrying.

Slide 20

Conditional Expressions

• C also provides a short way to express things of the form

if (condition)

variable = value1

else

variable = value2

namely the ternary (three operands) operator ?.

• Example:

sign = (x >= 0) ? 1 : -1;

assigns 1 to sign if x is non-negative, -1 otherwise.

• (Use with caution — compact, but can easily lead to code that’s difficult for

humans to understand.)

CSCI 1312 September 12, 2016

Slide 21

Conditional Execution, Continued

• A simple use for conditional execution is this kind of error checking. But of

course there are many others!

• Challenging part in many applications is to make sure you’ve covered all the

possibilities.

Slide 22

Example — Finding Roots of a Quadratic Equation

• As a rather math-y example, let’s write a program to compute and print the

roots of a quadratic equation

ax
2 + bx+ c = 0

• We’ll use the formula

−b±
√
b2 − 4ac

2a

and try to account for as many cases as we can . . .

CSCI 1312 September 12, 2016

Slide 23

Minute Essay

• Have you previously used something that supports conditional execution

(Matlab?), and if so how does C’s version compare to it?

