CSCI 1312 September 12, 2016

4)

Administrivia

o Homework 1 grades e-mailed earlier today. (This is how you will get feedback

on programming assignments.)
o Reminder: Homework 2 due Wednesday.

e First quiz next Monday. About 10 minutes, end of class, “open book / open
Slide 1 notes” (meaning access to textbook, your notes, anything on the course Web
site, nothing else). Topics include anything we cover up through next Monday
(so, C programming as covered so far, material about base 2 and how used to
represent integers in computers). Meant to be not stressful and not
something you need to study for, beyond a quick review.

Minute Essay From Last Lecture

e (Everyone got it right!)

Slide 2

CSCI 1312 September 12, 2016

Text Editors and Other Tools, Revisited

e Good news from what people turned in for Homework 1 is that most people
seemed willing to give these tools a chance. Admittedly not novice-friendly,
but (I think!) expert-friendly.

(My suggestion: From time to time, figure out one or two things that really bug

Slide 3 you — e.g., “l don’t know how to copy and paste” — and read documentation,

or ask, until you find a solution. Add that to your “bag of tricks” ... “Lather,

rinse, repeat.”?)

e |f you like having something with a menu bar, etc., you might try gvim,
though it won’t work from a remote login.

e To turn in your homework from a remote session, consider using the script on

the “sample programs” page.

. J

C and Representing Numbers — Integers

e Computer hardware typically represents integers as a fixed number of binary
digits, using “two’s complement” idea to allow for representing negative

numbers.

e C, like many (but not all!) programming languages bases its notion of integer
Slide 4 data on this, but also has a notion of different types with different sizes.

e Unlike many more-recent languages, C defines for each type a minimum
range rather than a definite size. Intent is to allow efficient implementation on
a wide range of platforms, but means some care must be taken if you want
portability.

CSCI 1312 September 12, 2016

C and Representing Numbers — Real Numbers

e Hardware also typically supports “floating-point” numbers, with a
representation based on a base-2 version of scientific notation. This allows
representing not only fractional quantities but also allows representing larger
numbers than would be possible with fixed-length integers. Notice that only
fractions that can be written with a denominator that's a power of two can be

Slide 5
represented exactly.

e Again C goes along with this and provides different “sizes” (£ 1loat and
double). As with integers, exact sizes not specified, only minimum criteria.

Text Data

o Remember that computers represent everything using ones and zeros. How
do we then get text? well, we have to come up with some way of “encoding”
text characters as fixed-length sequences of ones and zeros —i.e., as

small(ish) numbers.

slide 6 ® (To be continued later in the semester.)

CSCI 1312 September 12, 2016

Conditional Execution

e So far all our programs have executed the same statements every time, just
maybe with different numbers.

e Often, though, we want to be able to do different things in different
circumstances — for example, print an error message and stop if the input
Slide 7 values don’t make sense (such as a negative number for the program to make

change).

e So, C (like most languages) provides some constructs for conditional
execution. Before we talk about them, we need ...

Boolean Expressions

e A Boolean value is either true or false; a Boolean expression is something
that evaluates to true or false.

o We can make simple examples in C using familiar math comparison
operators. Examples:

Slide 8 -x > 10
-y <=5
- x ==y (Note the use of == and not =)

CSCI 1312 September 12, 2016

4)

Boolean Expressions, Continued

e Boolean algebra defines some operators on these values; the most important
for us are written in C as

— I —*“not”, true if the operand is false.

— && — “and”, true if both operands are true.

Slide 9 — | | —"or”, true if either operand is true (or both are).

e Can use these to build up complex expressions. As with arithmetic
expressions, use parentheses when in doubt. Examples:
- (x >= 0) && (x <= 10)

- !'(x == vy) (though we could also just write x !=).

Boolean Expressions in C

e Although there are only two Boolean values, C represents them as ints,
with 0 meaning true and anything else meaning false. (Usually you don’t care
about this, but it can be good to know.)

e This means that the compiler will accept both x == yandx = v, but
Slide 10 they mean different things. Very common mistake (and not just for
beginners!). Compiler will often warn you about this (though you may need to
use that —Wall flag).

CSCI 1312 September 12, 2016

-

Conditional ExecutioninC — if/else

e To execute a statement if an expression evaluates to true, use i f:

if (x > 0)

printf ("greater than zero\n");

e To execute one statement if an expression is true, another if it's false, use i £
Slide 11 and else:

if (x > 0)
printf ("greater than zero\n");
else

printf ("not greater than zero\n");

4)

if/else, Continued

e To execute a group (“block”) of statements rather than just a single statement,
use curly braces for grouping:

if (x > 0) {
printf ("greater than zero\n");
Slide 12 printf ("and that is good\n");
}
else {
printf ("not greater than zero\n");
printf ("and that is bad\n");
}

e What happens if you forget the braces? The program may still compile and
run, but it probably won’t do what you meant.

. J

CSCI 1312 September 12, 2016

\
if/else, Continued

e Several styles for where to put the curly braces. Which is best? Some people
care; | say pick one that’s readable (to humans) and stick with it.

o (Remember that you're writing for “two audiences” — compiler an humans.)

Slide 13
Conditional Execution, Continued
o What if more than two? We could “nest” i f/e 1 se constructs, e.g.,
if (x < 0) {
printf ("less than\n");
}
else {
Slide 14

if (x > 0) |

printf ("greater than\n");

}
else {

printf ("equal\n");
}

}

e But this gets ugly fairly quickly. So ...

CSCI 1312 September 12, 2016

Conditional Execution, Continued

e Better:

if (x < 0) {
printf ("less than\n");
}
Slide 15 else if (x > 0) {
printf ("greater than\n");
}

else {
printf ("equal\n");
}

e Can have as many cases as we need; can omit e 1 se if not needed.

. J

Conditional Execution, Continued

e Sometimes we can go further, though. If all of the conditions are of the form
integer-expression == value
then we can use the swit ch construct. Notice that characters (char)

count as integers in this context.

Slide 16 e Example (similar to calculator example in textbook) on next slide.

CSCI 1312 September 12, 2016

4)

Conditional Execution, Continued

e char menu_pick; /* should be one of "+’, "—' x/
/* ... */

switch (menu_pick) {

case '+':
result = inputl + input2;
Slide 17
break;
case '-':
result = inputl + input2;
break;
default:
result = 0;
printf ("operator not recognized\n");
}
Simple I/O, Revisited
o We can now do simple error-checking that scanf did what we asked.
C-idiomatic way looks like this simple example:
if (scanf ("%d", &x) == 1)
/+ okay =*/
Slide 18 else

/* error */

CSCI 1312

September 12, 2016

Slide 19

Simple 1/0O, Revisited

e Doing a really good job with interactive input is surprisingly tricky — what

constitutes an error, how do you prompt user to try again.

e So for this class we’ll focus on some simple safety checks: if input should be
numeric it is, values make sense for the program (e.g., input to “count

change” program is not negative, etc.).

e For this class it's usually best to just bail out on bad input, rather than retrying.

Slide 20

Conditional Expressions

e C also provides a short way to express things of the form

if (condition)

variable = valuet
else

variable = value2

namely the ternary (three operands) operator ?.
Example:
sign = (x >= 0) 2 1 : -1;

assigns 1 to sign if x is non-negative, -1 otherwise.

(Use with caution — compact, but can easily lead to code that’s difficult for

humans to understand.)

CSCI 1312 September 12, 2016

Conditional Execution, Continued

e A simple use for conditional execution is this kind of error checking. But of

course there are many others!

e Challenging part in many applications is to make sure you’ve covered all the

possibilities.
Slide 21
Example — Finding Roots of a Quadratic Equation
e As arather math-y example, let’s write a program to compute and print the
roots of a quadratic equation
ar’ +br+c¢=0
Slide 22 o We'll use the formula

—b+Vb? — 4dac

2a

and try to account for as many cases as we can ...

CSCI 1312 September 12, 2016

e Have you previously used something that supports conditional execution
(Matlab?), and if so how does C’s version compare to it?

Slide 23

