
CSCI 1312 September 14, 2016

Slide 1

Administrivia

• Reminder: Homework 2 due today.

• Homework 3 on the Web; due next Wednesday.

Slide 2

Minute Essay From Last Lecture

• Almost everyone had worked with conditional execution before. The concepts

are indeed similar, but syntax may be different (though for Java it’s pretty

much identical — no accident).

• Not from the minute essays, but from another e-mail:

“Why when I try to input a large number do I get weird results (wrong and/or

negative)?”

Consequence of integers being represented as fixed size. Not much to be

done about it at this point. Something for future discussion?



CSCI 1312 September 14, 2016

Slide 3

Example of Conditional Execution, Continued

• Recall problem from last time: Compute and print the roots of a quadratic

equation

ax
2 + bx+ c = 0

using the formula

−b±
√
b2 − 4ac

2a

• As noted, a key issue is identifying all the cases that need to be dealt with

differently . . .

Slide 4

Choosing Good “Test Data”

• After you’ve written a program, you need to try it with various input (“test it”).

• Choosing good tests is maybe a bit of an art, but you should try to choose

ones that:

– Demonstrate that all parts of your code work (i.e., that you explore all the

“paths” through it).

– Allow you to easily know whether the answer is right! i.e., choose inputs

where you can easily figure out what the answer should be.



CSCI 1312 September 14, 2016

Slide 5

Quotes of the Day/Week/?

• From a key figure in the early days of computing:

“As soon as we started programming, we found to our surprise that it wasn’t

as easy to get programs right as we had thought. Debugging had to be

discovered. I can remember the exact instant when I realized that a large part

of my life from then on was going to be spent finding mistakes in my own

programs.” (Maurice Wilkes: 1948)

• From someone in a discussion group for the Java programming language:

“Compilers aren’t friendly to anybody. They are heartless nitpickers that enjoy

telling you about all your mistakes. The best one can do is to satisfy their

pedantry to keep them quiet :)”

Slide 6

Functions and Problem Decomposition

• So far all our programs have been one big chunk of code. This is okay for

simple programs, but quickly becomes difficult to understand as problems get

bigger.

• Further, some things we don’t want to, or can’t, really write ourselves, such as

the code for input/output.

• So C, like many/most other programming languages, gives you a way of

decomposing problems into subproblems. C calls them functions. Using this

feature to good effect is something of an art, but may teach you something

about problem decomposition in general, which is a useful skill.



CSCI 1312 September 14, 2016

Slide 7

Functions in C

• C functions are similar to functions in math, except that they can have side

effects (similar to how evaluation of expressions can have side effects).

• Next time we’ll look at details, but for now, notice that every program you / we

have written so far defines a function called main, and most of them use

system library functions scanf and printf.

Slide 8

Minute Essay

• Anything noteworthy (interesting, difficult, etc.) about Homework 2?


