
CSCI 1312 September 16, 2016

Slide 1

Administrivia

• Reminder: First quiz Monday. As noted previously, you will have access to the

textbook, your notes (paper or electronic), and the course Web site, but the

only allowed computer use is to access these. Intended to take no more than

10 minutes.

Likely questions include “what does this C program print to the screen?”,

“write some C code to do the following”, and questions about the material on

binary numbers.

Slide 2

More Administrivia

• Sample solutions to first two homeworks posted (linked from “lecture topics

and assignments” page, at the bottom).

• Homework 2 graded. Everyone did well! Notice however that I did deduct (at

most a point) if you didn’t supply the requested “honor code statement” (the

pledge, or just “pledged”, plus a short sentence about any help

given/provided). (Pedagogical rule that if you want students to do something,

take off points if they don’t?)



CSCI 1312 September 16, 2016

Slide 3

Minute Essay From Last Lecture

• A few people commented on the (5/9) being evaluated using integer division.

(That was part of the point of this problem.)

• Several people commented on how the seconds-conversion program was

similar to the count-change example. Not an accident.

• A few people commented on “int” having a limited range. I’m not sure there’s

much to be done about this, alas.

• Not from minute essays, but based on homework:

When possible, get the computer to do arithmetic for you! E.g., rather than

calculating number of seconds per hour (3600) yourself (maybe with a

calculator), just write 60*60 and the compiler will do the arithmetic. More

readable for humans and possibly more accurate too.

Slide 4

Tracing Code

• A valuable skill to have is working through what the computer will do when it

executes your program — “tracing code” (also known as “desk checking”,

from the days before desktop computers, or “playing computer”).

• Idea is to write down names of variables, their values; when one changes,

cross out old value and put in new one.

• Do a short example using the “count change” program . . .



CSCI 1312 September 16, 2016

Slide 5

Functions — Recap

• C, like many/most other programming languages, gives you a way of

decomposing problems into subproblems. C calls them functions. Using this

feature to good effect is something of an art, but may teach you something

about problem decomposition in general.

• C functions are similar to functions in math, except that they can have side

effects (similar to how evaluation of expressions can have side effects).

Slide 6

Functions in C, Continued

• Every function has

– A name (where rules for names are the same as those for variables).

– Zero or more inputs (called parameters).

– A return type (void to indicate that the function doesn’t return anything).

– Some code to be executed when the function is called.

• When you call (use) a function, you

– Supply values for inputs (pass in values for parameters).

– Optionally, use the value returned by the function. The function call is an

expression, as discussed previously, and its value is the value returned by

the function.



CSCI 1312 September 16, 2016

Slide 7

Defining and Using Functions

• Simple example of defining and using a function to add two integers:

int add(int a, int b) {

return a + b;

}

int main(void) {

int result = add(1, 2);

printf("%d\n", result);

return 0;

}

• add has two parameters called a and b. When we call add from main, the

values 1 and 2 are copied into these variables. The code in add executes

until it reaches a return. At that point, we go back to the calling function,

and the value of the function call is whatever is after the keyword return.

Slide 8

Functions in C — Declaration Versus Definition

• Some languages let you put function definitions in any order you want, and

even split them up among files.

• But this requires the compiler to be somewhat smarter than C compilers are

required to be. In C, functions must either be defined or declared before

being used.

• Function declarations give function name, number and types of parameters,

and return type. Syntax is just like that for function definitions, except no

parameter names needed, and body is replaced with a semicolon.

• For your own functions, you can either define them before using them, or

define them in whatever order you like and put declarations at the top.

• For library functions? declarations are part of what’s supplied by #include

directives.



CSCI 1312 September 16, 2016

Slide 9

The main Function, Revisited

• As noted, every C program you / we have written so far includes a definition of

a function called main. All complete C programs must have such a function.

• main is defined in your code:

– It has no parameters. (Actually, it can — there’s an alternative definition

that allows it to accept command-line arguments, similar to the ones that

follow commands such as gcc, ls, etc. Later!)

– It returns an integer value.

• main is called by some type of environment (the command shell for us,

when you type a.out after compiling). It gives your code the optional

parameters (more about this later) and receives the value you return. Return

value can be used to indicate success/failure (useful for shells that

themselves support conditional execution).

Slide 10

“Hello World” Program, One More Time

• Historical/cultural aside: Among computer programmers, it’s considered

traditional that the first program one writes in a new language just prints “hello

world” to the screen — maybe not the simplest possible program, but close.

Particularly apt for C, because the tradition was begun by an early and still

authoritative work on C (The C Programming Language, Kernighan and

Ritchie).

• Almost all of this program, and other examples, should now more or less

make sense! (Exceptions are representation of character strings, & syntax for

parameters. Soon!)



CSCI 1312 September 16, 2016

Slide 11

C Library Functions

• Standard C comes with a number of library functions to do things many

programs want to do.

• Examples we’ve seen so far — scanf, printf.

• UNIX/Linux systems normally have man pages for these functions, describing

parameters and return values in full detail (hence, not always easy reading).

(Tip: man printf gives the man page for a command rather than the C

function. Use man 3 printf to get what we want.)

(Tip: When reading a man page, h will bring up a summary of what keys do

what — page up/down, quit, etc.)

Slide 12

Defining and Using Functions — Example

• As a somewhat contrived example, we could rearrange the “solve a quadratic

equation” example from previous classes.

• By putting the code to solve the equation and print results in a function, we

can also easily have it print some examples/tests. Maybe do this before

prompting for input?



CSCI 1312 September 16, 2016

Slide 13

Minute Essay

• Any questions?


